

OTS 1.1 vs. OTS 1.2

Approvers
Function Name Approvers comments

Reviewers

Function Name Reviewers comments

REFERENCE : 000xxx

CLASSIFICATION: Information

OWNER : Arjuna Lab

OTS 1.1 vs. OTS 1.2

Version No. 1.0 000xxx 31 January 2002

 OTS 1.1 vs. OTS 1.2 Page 2 of 16

CONTENTS Page

1 Introduction.. 3

1.1 Scope .. 3
1.2 History ... 3
1.3 Terminology... 3
1.4 References .. 3

2 Motivation .. 5

3 Defined Policies... 6

3.1 Transactional Policy .. 6
3.2 Invocation Policy ... 7
3.3 Interactions between InvocationPolicy and OTSPolicy... 8
3.4 NonTxTargetPolicy Policy ... 8

4 Policy and Object Reference... 9

5 Impact on the User’s View... 10

6 Impact on Implementer.. 10

6.1 Policy Checking Requirements ... 10
6.2 Transaction Service Portability.. 13

7 Impact on Existing Interfaces .. 16

OTS 1.1 vs. OTS 1.2

Version No. 1.0 000xxx 31 January 2002

 OTS 1.1 vs. OTS 1.2 Page 3 of 16

1 Introduction

1.1 Scope

CORBA is a standard specification for distributed objects published by the OMG. It applies object-
oriented concepts to client/server development and is designed to integrate independently developed
applications.

Besides CORBA, the OMG developed a collection of system-level services, necessary to construct a
distributed application, packaged with IDL-specified interfaces. Each CORBA service, as well as any
specification defined by the OMG, follows a set of procedures or steps (RFI, RFP, RFC, …) until its
adoption by OMG members then normally deployed into the market to ensure interoperability between
products implementing a same service. An adopted OMG specification or CORBA service may be
requested to change if some bugs or malfunctions have been noticed by the implementers (vendors) or
by users, or even if some functionalities are missed in the adopted specification but requested to be
added. A change to an existing specification can also be requested if it impacted by a new technology
or specification: this is the case of the Object Transaction Service or OTS.

OTS is the CORBA service that defines transactions allowing building reliable distributed applications.
The OTS specification in its version 1.1, widely implemented in the market, has been requested to
change in order to provide some enhancement and to take into account the presence of CORBA
Messaging, which defines a new communication paradigm between client and server, or simply objects,
impacting the way transactions are managed between these partners. The result of this change is the
new specification: OTS 1.2.

This document explains motivations that have led to change to OMG OTS specification, then it
describes differences between version 1.1 and 1.2.

Note:

In addition to the way the transactional quality of service is specified, OTS 1.2 has introduced some
new methods such get_timeout() on the current interface, and has also enhanced or clarified the
behaviours of some methods and some protocols. This document focuses mainly on the new
transactional management since we believe it’s the main concept that distinguishes OTS 1.2 from
previous OTS versions.

1.2 History

Date Ver No. Description Updated By

1.3 Terminology

Term Description

1.4 References

References Description

OTS 1.1 OMG Object Transaction Service v1.1, November 1997

OTS 1.1 vs. OTS 1.2

Version No. 1.0 000xxx 31 January 2002

 OTS 1.1 vs. OTS 1.2 Page 4 of 16

OTS 1.2 OMG OTS 1.2, May 2001, ptc/01-05-02

CORBA
Messaging

OTS 1.1 vs. OTS 1.2

Version No. 1.0 000xxx 31 January 2002

 OTS 1.1 vs. OTS 1.2 Page 5 of 16

2 Motivation

“The introduction of asynchronous messaging (AMI) into CORBA requires a new form of transaction
model to be supported. The current CORBA model, the shared transaction model, provides an end to
end transaction shared by the client and the server. This model cannot be supported by asynchronous
messaging. Instead, a new model, which uses a store and forward transport between the client and
server, is introduced. In this new model, the communication between client and server is broken into
separate requests, separated by a reliable transmission between routers. When transaction are used,
this model uses multiple shared transactions, each executed to completion before the next one begins.
This transaction model is called the unshared transaction model.” [In OTS 1.2 specification].

According to this background or motivation, the OTS specification has been impacted mainly on the
way to define the transactional behaviour of CORBA objects and the way the transaction context has to
be managed according to the transactional behaviour or policy applied on a requested CORBA object.

Impact on the OTS architecture

Basically, from the application point of view entities defined by OTS do not change. These entities are:

• Transactional Client (TC)

• Transactional Objects (TO)

• Recoverable Objects

• Transactional Servers

• Recoverable Servers

Figure 1 -

The term transactional object refers to an object whose behaviour is affected by being invoked within
the scope of a transaction. Such object typically contains or refers to data that can be modified by
requests.

The Transaction Service does not require that all requests have transactional behavior, even when
issued within the scope of a transaction. An object can choose to not support transactional behavior, or
to support transactional behavior for some requests but not others. Then, we distinguish a transactional
object from a nontransactional object, which refers to an object none of whose operations are
affected by being invoked within the scope of a transaction created by a transactional client

From the Transaction Service point of view, a transactional object is seen as an object that should
obtain information on the transaction for which it should perform task, then an object to which a
transaction context should be propagated.

Recoverable Server

Transaction Service

Transactional
Originator

Transactional
Server

Resource
Object

begin or

end

transaction

not involved in

transaction

completion
may force rollback

registers resource in
transaction completion,

may force rollback

Participates in
transaction

completion

transaction
context

transaction
context

transaction
context

transaction
context

transaction
context

transaction
context

transaction
context

transaction
context

transaction
context

transaction
context

Transactional
Object

OTS 1.1 vs. OTS 1.2

Version No. 1.0 000xxx 31 January 2002

 OTS 1.1 vs. OTS 1.2 Page 6 of 16

OTS 1.1 assumes that the transactional object is normally requested by a transactional client, and then
should be involved in the same client’s transaction. However, CORBA messaging introduces a new
communication paradigm that consists to place a router between the client and the requested object as
described in the figure 2.

Figure 2 -

The new responsibility of the Transaction Service, as stated by new version 1.2, is not only to determine
if a transaction context is needed to be propagated to the requested object, but also to determine if the
this context is the one created by the transactional originator (shared context) or a different context
(unshared context) created by a tier such the router.

To determine what is the strategy to adapt the Transaction Service or OTS 1.2 utilizes Transactional
Policies defined as POA policies. These policies are encoded in the IOR as tag components and
exported to the client when an object reference is created. According to these policies the Transaction
Service can determine which transaction context is needed to be propagated until the end object.
Furthermore, according to a policy, the Transaction Service can determine if the nature of the requested
object, or the way that it could be invoked, fits the way the client want to invoke it – synchronously
(shared) or asynchronously (unshared).

3 Defined Policies

3.1 Transactional Policy

In OTS 1.1, an object declares its ability to support transaction semantic, in the sense that it able to
recognize and to accept a transaction context, by inheriting from an empty interface called
TransactionalObject. In OTS 1.2 terms, it is as supporting a shared transaction mode.

interface TransactionalObject {

};

This mechanism had weak transaction semantics, since it was also used by the infrastructure to control
transaction propagation. Such an object always received a shared transaction if one was active, but did
not receive one when there was no active transaction. This behavior is more accurately described as
allowing a shared transaction, since it provided no guarantee to the client as to what the object might
do if it did or did not receive a shared transaction. This weak semantic is not carried forward as an
explicit policy. OTS 1.1 did not provide a mechanism to require a shared transaction at invocation time.
This behavior produces possible choices for shared transaction support illustrated in Table 1.

Table 1 – Shared Transaction Behaviors in OTS 1.1

Transaction None Shared

Requires No inheritance from TransactionalObject Cannot be specified with OTS 1.1

Allows No inheritance from TransactionalObject inheritance from TransactionalObject

Transaction Service

Transactional
Originator

transaction
context

transaction
context

Transactional

Object

Router

ORB

transaction
context

transaction
context

transaction
context

transaction
context

Shared Mode

Unshared Mode Unshared Mode

OTS 1.1 vs. OTS 1.2

Version No. 1.0 000xxx 31 January 2002

 OTS 1.1 vs. OTS 1.2 Page 7 of 16

In OTS 1.2, although the use of TransactionalObject is maintained for backward compatibility, explicit
transactional behaviors are now encoded using OTSPolicy values, which are independent of the
transaction propagation rules used by the infrastructure. These policies and their OTS 1.1 equivalents
are defined as shown in Table 2.

Table 2 – New Shared Transaction Behaviors in OTS 1.2

OTSPolicy Policy Value OTS 1.1 Equivalent

Reserved [1] 0 Inheritance from TransactionalObject

REQUIRES 1 No equivalent

FORBIDS 2 No inheritance from TransactionalObject [2]

ADAPTS [3] 3 No equivalent

[1] - The ALLOWS semantics associated with inheritance from TransactionalObject cannot be coded
as an explicit OTSPolicy value in OTS 1.2.

[2] - FORBIDS is more restrictive than the absence of inheritance from TransactionalObject since it
may raise the INVALID_TRANSACTION exception.

[3] - ADAPTS provides a stronger client-side guarantee than inheritance from TransactionalObject.

• REQUIRES - The behavior of the target object depends on the existence of a current transaction.
If the invocation does not have a current transaction, a TRANSACTION_REQUIRED exception
will be raised.

• FORBIDS - The behavior of the target object depends on the absence of a current transaction. If
the invocation does have a current transaction, an INVALID_TRANSACTION exception will be
raised.

• ADAPTS - The behavior of the target object will be adjusted to take advantage of a current
transaction, if one exists. If not, it will exhibit a different behavior (i.e., the target object is sensitive
to the presence or absence of a current transaction).

Figure 3 - OTS 1.2 OTSPolicy and client relationship

3.2 Invocation Policy

With the introduction of messaging, the unshared transaction model is used when the request is made
via a router. The InvocationPolicy specifies which form of invocation the target object supports. The
InvocationPolicy is defined in Table 3.

Object
FORBIDS

Object
ADAPTS

Object
REQUIRES

Transactional
Client

NonTransactional

Client

OK

OK

OK

OK

INVALID_
TRANSACTION

TRANSACTION_
REQUIRED

OTS 1.1 vs. OTS 1.2

Version No. 1.0 000xxx 31 January 2002

 OTS 1.1 vs. OTS 1.2 Page 8 of 16

Table 3 – InvocationPolicy Behaviors

InvocationPolicy Policy Value

EITHER 0

SHARED 1

UNSHARED 2

• EITHER - The behavior of the target is not affected by the mode of client invocation. Both direct
invocations (synchronous) and invocations using routers (asynchronous) are supported.

• SHARED - all invocations that do not involve a routing element (i.e., the client ORB directly
invokes the target object with no intermediate routers).

• UNSHARED - all invocations that involve a routing element.

The InvocationPolicy component is significant only when transactions are used with CORBA
messaging.

3.3 Interactions between InvocationPolicy and OTSPolicy

Although InvocationPolicy and OTSPolicy are distinct policies, not all combinations are valid. The
valid choices are shown in Table 4.

Table 4 – InvocationPolicy and OTSPolicy combinations

InvocationPolicy/

OTSPolicy

EITHER SHARED UNSHARED

REQUIRES OK

Requires_Either

OK

Requires_Shared

OK

Requires_Unshared

FORBIDS Invalid OK

Allows_None

Invalid

ADAPTS Invalid OK

Allows_Shared

Invalid

Transactional target objects that accept invocations via routers must support shared transactions, since
the routers use the shared transaction model to reliably forward the request to the next router or the
eventual target object. Invalid policy combinations are detected when the POA is created.

3.4 NonTxTargetPolicy Policy

In OTS 1.1, when a client performs a request on a non-transactional object, its request is propagated.
This is not the case with OTS 1.2, in which INVALID_TRANSACTION exception is raised.

OTSPolicy is used at the server, which means that the server imposes its transactional policy on the
client. From the client side, in particular client in the scope of an active transaction, rather than to
perform a transactional request on an object that may raise an exception, it would be useful to avoid
propagating the transaction context to such object, which does not understand the transaction
semantic. This is the aim of the NonTxTargetPolicy Policy.

A non-transactional object has an IOR that either contains a TAG_OTS_POLICY component with a
value of FORBIDS or does not contain a TAG_OTS_POLICY component at all. The
NonTxTargetPolicy policy is an ORB-policy that is set by the client application using the
ORB::create_policy interface. Once set, the policy is used to control whether requests on non-
transactional targets will raise the INVALID_TRANSACTION exception (PREVENT) or will be permitted
to proceed normally (PERMIT). In other words, the request can be rejected, if necessary, at the client
side rather at the server side.

OTS 1.1 vs. OTS 1.2

Version No. 1.0 000xxx 31 January 2002

 OTS 1.1 vs. OTS 1.2 Page 9 of 16

4 Policy and Object Reference

Creating Transactional Object References

Object references are created as defined by the POA. An OTSPolicy object is created by invoking
ORB::create_policy with a PolicyType of OTSPolicyType and a value of type OTSPolicyValue. An
InvocationPolicy may also be associated with a POA using the same mechanism. When either or both
of these policies are associated with a POA, the POA will create object references with either or both
policies encoded as tagged components in the IOR:

Transactional Policy

OTSPolicy objects can only be used with POAs that support an OTS-aware ORB at the OTS 1.2 level
or above. An ORB that recognizes such policies is referred as an OTS-aware ORB, while an ORB that
does not recognize them is considered as an OTS-unaware ORB.

OTSPolicy values are normally encoded in the TAG_OTS_POLICY component of the IOR and will
always be present when IORs are created by OTS-aware ORBs at the OTS 1.2 level or above.

If an OTSPolicy is not present in the IOR, the client may assume two possibilities:

• The object it was created by an OTS-unaware ORB or,

• an OTS-aware ORB at the OTS 1.1 level or below.

Invocation Policy

• InvocationPolicy objects can only be used with POAs that support an OTS-aware ORB at the
OTS 1.2 level or above.

• InvocationPolicy values are encoded in the TAG_INV_POLICY component of the IOR.

• If an InvocationPolicy is not present in the IOR, it is interpreted as if the TAG_INV_POLICY was
present with a value of EITHER.

Transaction-unaware POAs

A transaction-unaware POA is any POA created on an OTS-unaware ORB. A transaction-unaware
POA will never create a TAG_OTS_POLICY or TAG_INV_POLICY component in any IORs it creates.
Transaction-unaware POAs cannot be created on an OTS-aware ORB with an associated OTS 1.2 or
higher implementation, however it is possible to create a POA that does not support transactions on an
OTS-aware ORB

Transaction-aware POAs

A transaction-aware POA is any POA that is created on an OTS-aware ORB with an associated OTS
1.2 or higher implementation. A transaction-aware POA will include tag components in IORs it creates
for OTSPolicy values and optionally InvocationPolicy values.

• Transaction-aware POAs can only be created in a server, which has an OTS 1.2 or higher
implementation associated with its ORB (i.e., an OTS-aware ORB).

• If an application attempts to create a POA with an OTSPolicy object in a server that does not
have an associated OTS (i.e., an OTS-unaware ORB), the InvalidPolicy exception is raised.

• A POA that does not support transactions is created in an OTS-aware ORB with an OTSPolicy
object with a FORBIDS policy value and is still called a transaction-aware POA.

• Transaction-aware POAs must have at least an OTSPolicy object associated with them. If an
OTSPolicy is not provided explicitly, an OTSPolicy object is created implicitly with a value of
FORBIDS.

• Transaction-aware POAs may (but need not) have InvocationPolicy objects associated with
them.

OTS 1.1 vs. OTS 1.2

Version No. 1.0 000xxx 31 January 2002

 OTS 1.1 vs. OTS 1.2 Page 10 of 16

• An attempt to create a transaction-aware POA with conflicting OTSPolicy and InvocationPolicy
values (as defined in Table 4) will raise the InvalidPolicy exception.

Table 5 summarizes the relationship between POA creation and IOR components on both OTS-
unaware and OTS-aware ORBs.

Table 5 - POA creation and IOR components

create_POA OTS-Unaware
ORB

OTS-Aware ORB

POA Policies Result Result TAG_INV_POLICY TAG_OTS_POLICY

Neither Ok Ok NO YES (with FORBDIS)

InvocationPolicy
SHARED

Raise
InvalidPolicy

Ok YES YES (with FORBDIS)

InvocationPolicy
EITHER or
UNSHARED

Raise
InvalidPolicy

Raise
InvalidPolicy

- -

OTSPolicy Raise
InvalidPolicy

Ok NO YES

Both with valid
combinations

Raise
InvalidPolicy

Ok YES YES

Both with valid
combinations

Raise
InvalidPolicy

Raise
InvalidPolicy

- -

OTS 1.1 on top of OTS-Aware ORB

An OTS 1.1 or below may reside on top of an OTS-Aware ORB. In that case any created object
reference will not contain the tag TAG_OTS_POLICY.

Question: How an OTS-Aware ORB distinguishes OTS 1.1 from OTS 1.2 to determine if the tag
TAG_OTS_POLICY should be added in the IOR with the default policy value FORBIDS?

5 Impact on the User’s View

From the user’s view the only difference between OTS 1.1 and OTS 1.2 consists on the way to define
the transactional behavior of object. Rather than to use the deprecated interface TransactionalObject, it
is widely recommended to adopt the transactional policies in order to define transactional behaviors of
objects.

6 Impact on Implementer

ORB/TS Considerations

The Transaction Service and the ORB must cooperate to realize certain Transaction Service function.
This cooperation is realized on the client invocation path and through the transaction interceptor.
The client invocation path is present even in an OTS-unaware ORB and is required to make certain
checks to ensure successful interoperability. The transaction interceptor is a request-level interceptor
that is bound into the invocation path.

6.1 Policy Checking Requirements

This section describes the policy checks that are required on the client side before a request is sent to a
target object and the server side when a request is received.

OTS 1.1 vs. OTS 1.2

Version No. 1.0 000xxx 31 January 2002

 OTS 1.1 vs. OTS 1.2 Page 11 of 16

The client invocation path is used to describe components of the client-side ORB which may include the
ORB itself, the generated client stub, CORBA messaging, and the OTS interceptor. The server side
includes the server-side ORB, the POA, and the OTS interceptor.

Client behavior when making transactional invocations

When a client makes a request on a target object, the behavior is influenced by the type of invocation,
the existence of an active client transaction, and the InvocationPolicy and OTSPolicy associated with
the target object. The client invocation path must verify that the client invocation mode matches the
requirements of the target object. This requires checking the InvocationPolicy encoded in the IOR
and, in some cases, the OTSPolicy. The required behavior is completely described by the following
tables.

Table 6 – InvocationPolicy checks required on the client invocation path

Invocation Mode InvocationPolicy Required Action

Synchronous EITHER Ok – Check OTSPolicy

 SHARED Ok – Check OTSPolicy

 UNSHARED Raise TRANSACTION_MODE

Asynchronous EITHER Ok – Check OTSPolicy

 SHARED Raise TRANSACTION_MODE

 UNSHARED Ok – Check OTSPolicy

An invocation is considered synchronous if it uses a standard client stub, the DII, or AMI with an
effective routing policy of ROUTE_NONE. An invocation is considered asynchronous if it uses the
features of CORBA messaging to invoke on a router rather than the target object.

Table 7 - OTSPolicy checks required on the Client Invocation Path

OTSPolicy OTS-unaware ORB OTS-aware ORB

REQUIRES Raise TRANSACTION_UNAVAILABLE Call OTS interceptor

FORBIDS Process invocation Call OTS interceptor

ADAPTS Process invocation Call OTS interceptor

In the case of routed invocations, the client invocation path must substitute an appropriate router IOR
before the OTSPolicy checks are executed. This ensures that the OTSPolicy checks are done against
the correct IOR.

The client OTS interceptor is required to make the following policy checks before processing the
transaction context described later.

Table 8 - OTSPolicy checking required by client OTS interceptor

OTS Policy Current Transaction No Current Transaction

REQUIRES Process invocation Raise TRANSACTION_REQUIRED

FORBIDS [1] PREVENT – raise INVALID_TRANSACTION

PERMIT – process invocation

Process invocation

ADAPTS Process invocation Process invocation

[1] FORBIDS processing depends on the setting of the NonTxTargetPolicy policy.

OTS 1.1 vs. OTS 1.2

Version No. 1.0 000xxx 31 January 2002

 OTS 1.1 vs. OTS 1.2 Page 12 of 16

Server-side behavior when receiving transactional invocations

Since the active transaction state as seen by the server-side can be different than the state observed by
the client ORB, the server-side is also required to make the OTSPolicy checks. These checks will be
made prior to the service context propagation checks.

Table 9 - OTSPolicy checks required on the Server-side

OTSPolicy OTS-unware ORB OTS-aware ORB

REQUIRES Process transaction Raise TRANSACTION_REQUIRED

FORBIDS Raise INVALID_TRANSACTION Process invocation

ADAPTS Process transaction Process invocation

The server OTS interceptor is required to make the following policy checks before processing the
transaction context.

Table 10 - OTSPolicy checking required by server OTS interceptor

OTSPolicy Current Transaction No Current Transaction

REQUIRES Process transaction Raise TRANSACTION_REQUIRED

FORBIDS Raise INVALID_TRANSACTION Process invocation

ADAPTS Process transaction Process invocation

Alternate Client processing for FORBIDS OTSPolicy component

When the NonTxTargetPolicy policy is set to PERMIT, the processing of the FORBIDS value (whether it
is explicitly encoded as a TAG_OTS_POLICY component or determined by the absence of inheritance
from TransactionalObject) does not raise the INVALID_TRANSACTION exception. Instead it is altered
as described below.

Since an OTS must be present for a client to have a current transaction at the time an invocation is
made, the client OTS interceptors must also be present within the client environment. This permits an
alternative behavior to be implemented on the client-side that maintains compatibility with prior versions
of OTS and simplifies client programming when making invocations on non-transactional objects. This
alternative behavior is summarized below:

• When the target object supports the FORBIDS policy, the alternative behavior is implemented if
the NonTxTargetPolicy policy is set to PERMIT.

• The client-side request interceptor must ensure that the current transaction is inactive before the
transaction propagation checks are executed.

• The current transaction must be made active after the request has successfully executed.

The current transaction can be made inactive by performing the equivalent of a suspend operation on
the current transaction prior to implementing the transaction propagation rules and made active again
by performing the equivalent of a resume operation when the response is returned to restore the
client’s current transaction. An implementation that produces equivalent results but does not use the
suspend and resume operation defined by this specification is conformant.

This preserves the client-programming model of earlier OTS levels while still guaranteeing that
transactions will not be exported to environments that do not understand transactional semantics.

OTS 1.1 vs. OTS 1.2

Version No. 1.0 000xxx 31 January 2002

 OTS 1.1 vs. OTS 1.2 Page 13 of 16

Interoperation with OTS 1.1 servers and clients

When OTS 1.2 clients are interoperating with OTS 1.1 servers (i.e., the IOR does not contain
TAG_OTS_POLICY component) the client invocation path must determine if the target object inherits
from TransactionalObject. If it does, it processes the request as if the OTSPolicy value was ADAPTS.
If it does not, it processes the request as if the OTSPolicy value was FORBIDS and uses the
NonTxTargetPolicy policy to determine the correct behavior.

OTS 1.1 clients may not interoperate with OTS 1.2 servers unless they unconditionally propagate the
transaction context. The OTS 1.2 server determines the proper OTSPolicy from the
TAG_OTS_POLICY component in the IOR.

An OTS 1.2 object that also inherits from the deprecated TransactionalObject (for backward
compatibility) must create POAs with a OTSPolicy value of REQUIRES or ADAPTS - any other policy
value is illegal and is an implementation error.

6.2 Transaction Service Portability

To enable a single Transaction Service to work with multiple ORBs, it is necessary to define a specific
interface between the ORB and the Transaction Service, which conforming ORB implementations will
provide, and demanding Transaction Service implementations can rely on.

Identification of the Transaction Service to the ORB

Prior to the first transactional request, the Transaction Service will identify itself to the ORB within its
domain to establish the transaction callbacks to be used for transactional requests and replies.

The Transaction Service identifies itself to the ORB using the following interface.

interface TSIdentification { // PIDL

exception NotAvailable {};

exception AlreadyIdentified {};

void identify_sender(in CosTSPortability::Sender sender)

raises (NotAvailable, AlreadyIdentified);

void identify_receiver(in CosTSPortability::Receiver receiver)

raises (NotAvailable, AlreadyIdentified);

};

The callback routines identified in this operation are always in the same addressing domain as the
ORB. On most machine architectures, there is a unique set of callbacks per address space. Since
invocation is via a procedure call, independent failures cannot occur.

The Transaction Service Callbacks

Callback routines are actually operations defined on the Sender and Receiver interfaces. Both
interfaces, defined as PIDL, are specified in the CosTSPortability module.

module CosTSPortability { // PIDL

 typedef long ReqId;

 interface Sender {

 void sending_request(in ReqId id,

 out CosTransactions::PropagationContext ctx);

 void received_reply(in ReqId id,

 in CosTransactions::PropagationContext ctx,

 in CORBA::Environment env);

 };

 interface Receiver {

 void received_request(in ReqId id,

OTS 1.1 vs. OTS 1.2

Version No. 1.0 000xxx 31 January 2002

 OTS 1.1 vs. OTS 1.2 Page 14 of 16

 in CosTransactions::PropagationContext ctx);

 void sending_reply(in ReqId id,

 out CosTransactions::PropagationContext ctx);

 };

};

The Sender interface defines a pair of operations, which are called by the ORB sending the request
before it is sent and after its reply is received.

Figure 4 -

The Receiver interface defines a pair of operations that are called by the ORB receiving the request
when the request is received and before its reply is sent.

Figure 5 -

Behavior of the Callback Interfaces with OTS 1.2

The following describes the behavior of the ORB and Transaction Service in managing the callback
interfaces. The behavior is based on a combination of an active connection between the transaction
service and the ORB and the presence or absence of a transaction service context in the GIOP
message. The new behavior is summarized below:

Client sending a Request

When the client ORB sends a request, there are three possible transaction service states in the client:

• OTS_NOT_CONNECTED - The transaction service has not connected to the client ORB. In this
state, the client ORB does not invoke the Sending_Request operation and no transaction service
context is inserted in the GIOP request message.

• OTS_NO_CURRENT_TRANSACTION - The transaction service has connected to the client ORB,
but there is no Current transaction associated with the client’s request. In this state, the client
ORB invokes the Sending_Request operation and the transaction service returns a null
PropagationContext. The client ORB does not place a transaction service context in the GIOP
request message.

• OTS_CURRENT_TRANSACTION - The transaction service is connected to the client ORB and
there is a Current transaction associated with the client’s request. In this state, the client ORB
invokes the Sending_Request operation and receives a PropagationContext from the
transaction service. The PropagationContext is inserted into the transaction service context of
the GIOP request message.

The client ORB cannot distinguish between states 2 and 3 and knows both as OTS (a transaction
service is connected to the ORB). This difference is known by the transaction service, which
implements the difference in behavior.

Sender

Outgoing
Request

sending_request received_reply
Incoming

Reply

Receiver

Incoming
Request

received_request sending_reply
Outgoing

Reply

OTS 1.1 vs. OTS 1.2

Version No. 1.0 000xxx 31 January 2002

 OTS 1.1 vs. OTS 1.2 Page 15 of 16

Server Receiving a Request

The server ORB receiving a request has two transaction service states:

• OTS_NOT_CONNECTED - as defined for the client, and

• OTS - a transaction service is connected to the server ORB.

Additionally the server ORB has two states defined by the presence or absence of a transaction service
context in the GIOP request message. The server ORB behavior is captured below:

• If no transaction service context is present in the GIOP request message, the server ORB does
not call the Receiving_Request operation and sets NO_REPLY to TRUE. This will be tested
when the reply is ready to be sent.

• If a transaction service context is present in the GIOP request message and the transaction
service state is OTS_NOT_CONNECTED, the server ORB raises the
TRANSACTION_UNAVAILABLE exception back to the client and does not deliver the method
request.

• If a transaction service context is present and the transaction service state is OTS, the server
ORB invokes Receiving_Request passing the transaction service context to the server ORB’s
transaction service as a PropagationContext.

Server sending a Reply

The server ORB sending a reply is driven by the NO_REPLY state set by receiving this request and the
transaction service state. Its behavior is as follows:

• If NO_REPLY is TRUE for this reply (there can be multiple outstanding with deferred
synchronous), then the server ORB does not call Sending_Reply and does not insert a service
context in the GIOP reply message.

• If NO_REPLY is FALSE and the transaction service state is OTS_NOT_CONNECTED, the server
ORB raises the TRANSACTION_ROLLEDBACK exception back to the client. The client is then
required to either initiate Rollback or mark the transaction rollback_only. This can only happen if
the transaction service abnormally terminates between the time the request is received and the
reply is ready to be sent.

• If NO_REPLY is FALSE and the transaction service state is OTS, invoke Sending_Reply and
insert the returned PropagationContext in the transaction service context of the GIOP reply
message.

Client Receiving a Reply

A client ORB receiving a reply is driven by the presence or absence of a transaction service context in
the GIOP reply message and the two transaction service states (OTS and OTS_NOT_CONNECTED).
The behavior is outlined below:

• If a transaction service context is not present in the GIOP reply message, the client ORB does not
call Receiving_Reply.

• If a transaction service context is present in the GIOP reply message and the transaction service
state is OTS_NOT_CONNECTED, the client ORB raises the TRANSACTION_ROLLEDBACK
exception back to the client. Like it’s analog in the server, this can only happen if the client
transaction service abnormally terminates between the time the request is sent and the reply is
received. Since the client’s transaction service is no longer active, subsequent operations on any
of the OTS interfaces will fail (OBJECT_NOT_EXIST) and the in-flight transaction will rollback
when the transaction service is subsequently restarted.

• If a transaction service context is present in the GIOP reply message and the transaction service
state is OTS, the client ORB invokes Receiving_Reply passing the transaction service context as
a PropagationContext.

OTS 1.1 vs. OTS 1.2

Version No. 1.0 000xxx 31 January 2002

 OTS 1.1 vs. OTS 1.2 Page 16 of 16

7 Impact on Existing Interfaces

In OTS 1.1, the Synchronization interface inherits the TransactionalObject interface. Since the
TransactionalObject interface has been deprecated and replaced by the use of the OTSPolicy
component, Synchronization will use the OTSPolicy ADAPTS.

Within the OTS 1.2 specification, the Synchronization interface still inherits the TransactionalObject
interface, but this has been maintained for backward compatibility.

interface Synchronization : TransactionalObject {

void before_completion();

void after_completion(in Status s);

};

