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Introduction to Byteman
Byteman is a bytecode manipulation tool which makes it simple to change the operation of 
Java applications either at load time or while the application is running. It works without the 
need to rewrite or recompile the  original program. In fact, Byteman can even be used to 
modify Java code which forms part of the Java virtual machine, classes such as String, 
Thread etc. Byteman employs a clear, simple and easy-to-use Event Condition Action 
(ECA) rule language, based on Java. ECA rules are used to specify where, when and how 
the original Java code should be transformed to modify its operation.

Byteman was invented primarily to support automation of tests for multi-threaded and 
multi-JVM Java applications using a technique called fault injection. It includes features 
which have been designed to resolve problems which arise with this type of testing. 
Byteman provides explicit support for test automation in four main areas:

● tracing execution of specific code paths and displaying application or JVM state

● subverting normal execution by changing state, making unscheduled method calls 
or forcing an unexpected return or throw

● orchestrating the timing of activities performed by independent application threads

● monitoring and gathering statistics summarising application and JVM operation

Byteman is actually of much more general use than as a tool for testing. The core engine 
which underlies Byteman is a general purpose code injection program capable of injecting 
rule code into almost any location reachable during execution of a Java method. Byteman 
rule  conditions and actions can employ all the normal Java built-in operations in order to 
test and modify program state. They can also invoke methods of application or JVM 
instances which are in scope at the injection point.

The Byteman rule language provides a standard set of built-in operations which support 
specific tasks from the categories outlined above. For example, a rule condition may 
enforce a wait on a thread rendezvous or an action may update a statistical counter. The 
available set of built-in calls is configured using a POJO plugin. This can easily be 
replaced with an alternative implementation either for a set of rules or on a piecemeal 
basis for individual rules. This makes it trivial to modify and/or extend the rule language to 
support ad-hoc program modifications which are specific to the application domain.

Running an Application with the Byteman Agent
In order to use Byteman to test a Java application the JVM must be configured to load and 
run the Byteman rule engine. At the most basic level this can be achieved using the 
-javaagent command line argument. The traiiling text appended to this argument points 
the JVM at a jar containing the Byteman rule engine. It may also identify the location of 
one or more Byteman rule scripts, files comprising a sequence of ECA rules specifying the 
side-effects to be introduced into the application under test. The engine reads these scripts 
when the application is launched and applies the rules to any code which matches a rule in 
the supplied scripts. Command scripts are provided to simplify the task of loading the 
agent and installing rules into your program.

In order to simplify test automation Byteman has been integrated with the two popular 
testing frameworks JUnit and TestNG, allowing Byteman tests to be driven from either ant 
or Maven. Using the integration modules fault injection testing involves no more than 
annotating your program with suitable rules and ensuring that the Byteman jars are located 
in the classpath.



If your Java application is a long-running program then you may want to load the rule 
scripts and, possibly even, the rule engine after the program has started running. For 
example, you may decide to install Byteman into your application server when it  appears 
to be suffering from performance problems and only then upload rules which trace 
execution of the code you suspect is misbehaving. Once the rule engine is loaded it 
cannot be unloaded. However, rules can be added and removed ad lib, allowed you to 
focus in on the problem in hand using more and more specific trace or monitoring rules. 
Note that when rules are removed the methods they affect are guaranteed to return to their 
original behaviour.

Full details of how to install the Byteman agent and how to upload rules either at boot time 
or at runtime are provided in subsection Running Applications with Byteman. Full 
examples of  how to use Byteman from the command line, plus examples of how to 
configure annotation based fault injection testing from ant or Maven project, are available 
in the online tutorials which are linked from the documentation page of the Byteman site 
http://www.jboss.org/byteman.

Event Condition Action Rules
The Byteman rule engine operates by introducing side-effects at specified points during 
execution. A Byteman script comprises a sequence of Event Condition Action (ECA)  rules 
which specify precisely how the application behaviour should be transformed at runtime. 
The three components of these rules, event, condition and action, are used, respectively, 
to define:

• where during application execution a side-effect should occur

• whether the side-effect should happen or not

• what the side effect should be

For example, in the following example rule the event is defined by the CLASS, METHOD and 
AT INVOKE clauses. It specifies a trigger point in method get() of class 
BoundedBuffer. The example assumes that the definition of method get() includes a 
call to  Object.wait(). This would be appropriate if, say, the buffer were empty. The 
location specifier AT INVOKE places the trigger point just before the call to this method. 

RULE throw on Nth empty get
CLASS org.my.BoundedBuffer
METHOD get()
AT INVOKE Object.wait()
BIND buffer = $this
IF countDown(buffer)
DO throw new org.my.ClosedException(buffer)
ENDRULE

The event also includes a BIND clause which establishes a binding for local variable 
buffer assigning it with the value $this (a rather artificial thing to do but this is an 
example). $this is an automatic binding which refers to the target of the the get() call 
which triggered the rule. buffer can be referred to later in the rule; in this case it is 
passed as an argument to the exception constructor in the DO clause.

The condition is defined by the IF clause. It invokes the standard Byteman built-in 
countDown(Object) which decrements a CountDown associated with the buffer ─ the 
example assumes some other rule has called createCountDown(buffer, N) to create 
this CountDown and initialise it with value N. The countDown built-in returns true when the 



value of the CountDown decrements to zero.

The action is defined by the DO clause. It causes an instance of ClosedException to be 
created and thrown from the get() call which triggered the rule.

So, in this example the condition will evaluate to false the first N-1 times that a getter 
attempts to wait. At the Nth triggering the condition will evaluate to true and the rule will 
fire, running the built-in action throw. This will cause the triggering thread to throw a 
ClosedException to the caller of method get().

Rule Bindings and Parameterization
The corresponding rule to set up the countDown might be defined as follows

RULE set up buffer countDown
CLASS org.my.BoundedBuffer
METHOD <init>(int)
AT EXIT
BIND buffer = $0;
     size = $1
IF $1 < 100
DO createCountDown(buffer, size - 1)
ENDRULE

This rule is attached to the constructor for class BoundedBuffer which takes a single 
int parameter. The AT EXIT location means it  is triggered just before the constructor 
returns. The BIND clause employs the indexed notation to refer to the method target, $0, 
and the first argument $1. The latter is assumed for the sake of the example to be the 
buffer size. If the buffer size is less than 100 then the rule creates a countDown with 
count size – 1 using the buffer as a key to identify it.

Notice how the parameterization of the createCountDown  and countDown calls with 
the bound variable buffer restricts the scope of these rules to specific cases. If there are 
two buffers, buffer1 and buffer2, but only buffer1 has size less than 100 then the 
condition for the set up rule will return false when buffer2 is created. This means the 
action will not run and a countDown will not be associated with buffer2. When a 
subsequent call is made to buffer2.get() the throw rule will be triggered but the 
condition will always return false and the rule will not fire.

If instead both buffers have size less than 100 then two countDowns will be created. The 
throw rule will be triggered when either buffer1.get() and buffer2.get() is called 
and in both cases will eventually fire and throw an exception. However, each countDown 
will still decrement independently.

Built-in Conditions and Actions
Byteman provides a suite of built-in conditions and actions used to coordinate the activities 
of independent threads e.g. delays, waits and signals, countdowns, flag operations and so 
on. These are particularly useful for testing multi-threaded programs subject to arbitrary 
scheduling orders. Judicious insertion of byteman actions can guarantee that thread 
interleavings in a given test run will occur in a desired order, enabling test code to reliably 
exercise parallel execution paths which do not normally occur with synthetic workloads.

Tracing operations are also provided so that test scripts can track progress of a test run 
and identify successful or unsuccessful test completion. Trace output can also be used to 



debug rule execution. Trace output to be quite finely tuned simply by providing a condition 
which tests the state of local or parameter variable bindings. Trace actions can insert 
these bound values into message strings, allowing detailed scrutiny of test execution 
paths.

A few special built-in actions can be used to subvert the behaviour of application code by 
modifying execution paths. This is particularly important in a test environment where it is 
often necessary to force application methods to generate dummy results or simulate an 
error.

A return action forces an early return from the code location targeted by the rule. If the 
method is non-void then the return action supplies a value to use as the method result.

A throw action enables exceptions to be thrown from the trigger method frame. A rule is 
always allowed to throw a runtime exception (i.e. instances of RuntimeException or its 
subclasses). If none of the caller methods up the stack from the trigger method include a a 
catch for RuntimeException or Throwable then effectively this aborts the current 
thread. Other exceptions may also be thrown so long as the trigger method declares the 
exception in its throws list. This restriction is necessary to ensure that the injected code 
does not break the method contract between the trigger method and its callers.

Finally, a call to the killJVM builtin allows a machine crash to be simulated by configuring 
an immediate exit from the JVM.

It is worth noting that rules are not just restricted to using built-in operations. Application-
specific side-effects can also be introduced by writing object fields or calling Java methods 
in rule events, conditions or actions. The obvious target for such field write or method call 
operations is objects supplied from the triggering method via local or parameter variable 
bindings. However, it is also possible to update static data and invoke static methods of 
any class accessible from the classloader of the triggering method. So, it is quite feasible 
to use Byteman rules to apply arbitrary modifications to the original program. Byteman 
rules have special access privileges which means that it is possible to read and write 
protected or private fields and call protected or private data.

Extending or Replacing the Byteman Language Built-ins
Another option to bear in mind is that the set of built-in operations available to Byteman 
rules is not fixed. The rule engine works by mapping built-in operations which occur in a 
given rule to public instance methods of a helper class associated with the rule. By default, 
this helper class is org.jboss.byteman.rule.helper.Helper. which provides the 
standard set of built-ins designed to simplify management of threads in a multi-threaded 
application. For example, the builtin operations createCountDown() and countDown() 
used in the example rules provided above are just public methods of class Helper.  The 
set of built-ins available for use in a given rule can by changed merely by specifying an 
alternative helper class for that rule.

Any non-abstract class may be specified as the helper. Its public instance methods 
automatically become available as built-in operations in the rule event, condition and 
action. For example, by specifying a helper class which extended the default class, Helper, 
a rule would be able to use any of the existing built-ins and/or also make rule-specific (or 
application-specific) built-in calls. So, although the default Byteman rule language is 
oriented towards orchestrating the behaviour of independent threads in multi-threaded 
tests, Byteman can easily be reconfigured to support a much wider range of application 
requirements.



Agent Transformation
The bytecode modifications performed by Byteman are implemented using a Java agent 
program. JVM class loaders provide agents with an opportunity to modify loaded bytecode 
just prior to  compilation (see package java.lang.Instrumentation for details of how 
Java agents work). The Byteman agent reads the rule script at JVM bootstrap. It then 
monitors method code as it is loaded looking for trigger points, locations in the method 
bytecode which match the locations specified in rule events.

The agent inserts trigger calls into code at each point which matches a rule event. Trigger 
calls are calls to the rule execution engine which identify:

● the trigger method, i.e. the method which contains the trigger point

● the rule which has been matched

● the arguments to the trigger method

If several rules match the same trigger point then there will be a sequence of trigger calls, 
one for each matching rule. In this case rules are mostly triggered in the order they appear 
in their script(s).The only exception is rules which specify an AFTER location, such as 
AFTER READ myField or AFTER INVOKE someMethod, which are executed in reverse 
order of appearance.

When a trigger call occurs the rule execution engine locates the relevant rule and then 
executes it. The rule execution engine establishes bindings for variables mentioned in the 
rule event and then tests the rule condition. If the condition evaluates to true it fires the 
rule. executing each of the rule actions in sequence.

Trigger calls pass the method recipient (this) and method arguments to the rule engine. 
These values may be referred to in the condition and action with a standard naming 
convention, $0, $1 etc. The event specification can introduce bindings for additional 
variables. Bindings for these variables may be initialized using literal data or by invoking 
methods or operations on the method parameters and/or static data. Variables bound in 
the event can simply be referred to by name in the condition or action. Bindings allow 
arbitrary data from the triggering context to be tested in the condition in order to decide 
whether to fire the rule and to be employed as a target or parameter for rule actions. Note 
that where the trigger code is compiled with the relevant debug options enabled the agent 
is able to pass local variables which are in scope at the trigger point as arguments to the 
trigger call, making them available as default bindings. Rules may refer to in-scope 
variables (including the method recipient and arguments) by  prefixing their symbolic 
names with the $ character e.g. $this, $arg1, $i etc.

The agent also compiles exception handler code around the trigger calls in order to deal 
with exceptions which might arise during rule processing. This is not intended to handle 
errors detected during operation of the rule execution engine (they should all be caught 
and dealt with internally). Exceptions are thrown out of the execution engine to alter the 
flow of control through the triggering method. Normally, after returning from a trigger call 
the triggering thread continues to execute the original method code. However, a rule can 
use the return and throw built-in actions to specify that an early return or exception 
throw should be performed from the trigger method. The rule language implementation 
achieves this by throwing its own private, internal exceptions below the trigger call. The 
handler code compiled into the trigger method catches these internal exceptions and then 
either returns to the caller or recursively throws a runtime or application-specific exception. 
This avoids normal execution of the remaining code in the body of the triggering method. If 
there are other trigger calls pending at the trigger point then these are also bypassed when 
a return or throw action is executed.



Agent Retransformation
The agent also allows rules to be uploaded while the application is still running. This can 
be used to redefine previously loaded rules as well as to introduce new rules on the fly. In 
cases where no currently loaded class matches the uploaded rule the agent merely adds 
the new rule to the current rule set. This  may possibly replace an earlier version of the 
rule (rules are equated if they have the same name). When a matching class is loaded the 
latest version of the rule will be used to transform it.

In cases where there are already loaded classes which match the rule the agent will  
retransform them, modifying the relevant target methods to include any necessary trigger 
calls. If an uploaded rule replaces an existing rule in this situation then when the previous 
rule is deleted all trigger calls associated with it are removed from the affected target 
methods. Note that retransforming a class does not associate a new class object with 
existing instances of the class. It merely installs a different implementation for their 
methods.

An important point where retransformation may occur automatically without an explicit 
upload is during bootstrap of the agent. The JVM needs to load various of its own 
bootstrap classes before it can start the agent and allow it to register a transformer. Once 
the agent has processed the initial rule set and registered a transformer it scans all 
currently loaded classes and identifies those which match rules in the rule set. It 
automatically retransforms these classes, causing subsequent calls to bootstrap code to 
trigger rule processing.

ECA Rule Engine
The Byteman rule execution engine consists of a rule parser, type checker and 
interpreter/compiler. The rule parser is invoked by the agent during bootstrap. This 
provides enough information to enable the agent to identify potential trigger points.

Rules are not type checked and compiled during trigger injection. These steps are delayed 
until the class and method bytecode they refer to has been loaded. Type checking requires 
identifying properties of the trigger class and, potentially, of classes it mentions using 
reflection. To do this the type checker needs to identify properties of loaded classes such 
as the types and accessibility of fields, method signatures etc. So, in order to ensure that 
the trigger class and all its dependent classes have been loaded before the type checker 
tries to access them, rules are type checked and compiled the first time they are triggered. 
This also avoids the cost of checking and compiling rules included in the rule set which do 
not actually get called.

A single rule may be associated with more than one trigger point. Firstly, depending upon 
how precisely the  rule specifies its event, it may apply to more than one class or more 
than one method within a class. But secondly, even if a rule specifies a class and method 
unambiguously the same class file may be loaded by different class loaders. So, the rule 
has to be type checked and compiled for each applicable trigger point.

If a type check or compile operation fails the rule engine prints an error and disables 
execution of the trigger call. Note that in cases where the event specification  is ambiguous 
a rule may type check successfully against one trigger point but not against another. Rule 
execution is only disabled for cases where the type check fails.

In the basic operating mode, trigger calls execute a rule by interpreting the rule parse tree. 
It is also possible to configure the rule engine to translate the rule bindings, condition and 
actions to bytecode which can then be passed by the JIT compiler. In either case, 
execution is performed with the help of an auxiliary class generated at runtime by the 



Byteman agent called a helper adapter. This class is actually a subclass of the helper 
class associated with the rule. It inherits from the helper class so that it knows how to 
execute built-in operations defined by the helper class. A subclass is used to add extra 
functionality required by the rule system, most notably method execute which gets called 
at the trigger point and a local bindings field which stores a hashmap mapping method 
parameters and event variables to their bound values.

When a rule is triggered the  rule engine creates an instance of the rule's helper adapter 
class to provide a context for the trigger call. It uses setter methods generated by the 
Byteman agent to initialise the rule and bindings fields and then it calls the adapter 
instance's execute method. Since each rule triggering is handled by its own adapter 
instance this ensures that concurrent triggers of the same rule from different threads do 
not interfere with each other.

The  interpreted version of execute0 locates the triggered rule and, from there, the parse 
tree for the event, condition and action. It traverses the parse trees of these three rule 
components evaluating each expression recursively. Bindings are looked up or assigned 
during rule execution when they are referred to from within the rule event, condition or 
action. When the execute method encounters a call to a built-in it can execute this call   
using reflection to invoke one of the methods inherited from its helper superclass.

When compilation of rules  is enabled the Byteman agent generates an execute method 
which contains inline bytecode derived from the rule event condition and action. This 
directly encodes all the operations and method invocations defined in the rule. This code 
accesses bindings and executes built-ins in the same way as the interpreted code except 
that calls to built-in are compiled as direct method invocations on this rather than relying 
on reflective invocation.

Although compilation takes slightly more time to generate it should provide a performance 
pay off  where the trigger method gets called many times.  Ideally, compilation should be 
selectable per rule or across the board for all rules in a rule set. At present it can only be 
enabled or disabled globally.



The Byteman Rule Language
Rules are defined in scripts which consists of a sequence of rule definitions interleaved 
with comment lines. Comments may occur within the body of a rule definition as well as 
preceding or following a definition but must be on separate lines from the rule text.  
Comments are lines which begin with a # character:

######################################
# Example Rule Set
#
# a single rule definition
RULE example rule
# comment line in rule body

. . .
ENDRULE

Rule Events
Rule event specifications identify a specific location in a target method associated with a 
target class. Target methods can be either static or instance methods or constructors. If no 
detailed location is specified the default location is entry to the target method. So, the 
basic schema for a single rule is as follows:

# rule skeleton
RULE <rule name>
CLASS <class name>
METHOD <method name>
BIND <bindings>
IF   <condition>
DO   <actions>
ENDRULE

The name of the rule following the RULE keyword can be any free form text with the 
restriction that it must include at least one non-white space character. Rule names do not 
have to be unique but it obviously helps when debugging rule scripts if they clearly identify 
the rule. The rule name is printed whenever an error is encountered during parsing, type 
checking, compilation or execution.

The class and method names following the CLASS and METHOD keywords must be on 
the same line. The class name can identify a class either with or without the package 
qualification. The method name can identify a method with or without an argument list or 
return type. A constructor method is identified using the special name <init>. For 
example,

# class and method example
RULE any commit on any coordinator engine
CLASS CoordinatorEngine
METHOD commit
. . .
ENDRULE

matches the rule with any class whose name is CoordinatorEngine, irrespective of the 
package it belongs to. When any class with this name is loaded then the agent will insert a 
trigger point at the beginning of any method named commit. If  there are several 
occurrences of this method, with different signatures then each method will have a trigger 
point inserted.



More precise matches can be guaranteed by adding a signature comprising a parameter 
type list and, optionally, a return type. For example,

# class and method example 2
RULE commit with no arguments on wst11 coordinator engine
CLASS com.arjuna.wst11.messaging.engines.CoordinatorEngine
METHOD State commit()
AT LINE 324
. . .
ENDRULE

This rule will only match the CoordinatorEngine class in package 
com.arjuna.wst11.messaging.engines and only match a method commit with no 
arguments and with a return type whose name is State. Note that in this example the 
package for class State has been left unspecified. The type checker will infer the 
package of the parameter or return type from the matched method where it is omitted.

The previous example also employs the location specifier AT LINE. The text following the 
line keyword must be able to be parsed to derive an integer line number. This directs the 
agent to insert the trigger call at the start of a particular line in the source code.

Note:

● The Byteman agent will not transform any classes in package java.lang nor 
classes in package  org.jboss.byteman, the byteman package itself (it is 
possible to remove the first of these restrictions by setting a System property, but 
you need to be really sure you know what you are doing – see below for details).

● Inner classes can be specified by employing the (internal format) '$' separator to 
distinguish an inner class from its enclosing outer class e.g. org.my.List$Cons, 
Map$Entry$Wrapper. 

Class Rules vs Interface Rules

Byteman rules can be attached to interfaces as well as classes. If the CLASS keyword is 
replaced with the keyword INTERFACE then the rule applies to any class which 
implements the specified interface. For example, the following rule

# interface rule example
RULE commit with no arguments on any engine
INTERFACE com.arjuna.wst11.messaging.engines.Engine
METHOD commit()
. . .
ENDRULE

is attached to method commit of interface Engine. If Engine is implemented by classes  
CoordinatorEngine and ParticipantEngine then the rule implies two trigger points, 
one at the start of method CoordinatorEngine.commit() and another at the start of 
method ParticipantEngine.commit(). The agent ensures that each implementing 
class is transformed to include a trigger call for the rule.

Overriding  Rules

Normally, Byteman only injects rule code into methods which are defined by the class 
identified in the CLASS clause. This is sometimes not very helpful. For example, the 
following rule is not much use



RULE trace Object.finalize
CLASS java.lang.Object
METHOD finalize
IF TRUE
DO System.out.println(“Finalizing “ + $0)
ENDRULE

The print statement gets inserted into method Object.finalize(). However, the JVM 
only calls finalize when an object's class overrides Object.finalize(). But with this 
rule these overriding methods are not modified. So, the rule will not be triggered in the 
precise case where the trace would be useful (n.b. this is not quite the full story – 
overriding method implementations which call super.finalize() will trigger the rule). 
There are many other situations where it might be desirable to inject code into overriding 
method  implementations. For example, class Socket is specialised by various classes 
which provide their own implementation of methods bind, accept etc. So, a rule attached 
to Socket.bind() will not be triggered when the bind method of one of these subclasses 
is called (not unless the subclass method calls super.bind()).

Of course, it is always possible to define a specific rule for each overriding class. However, 
this is tedious and may possibly miss some cases when the code base is changed. So, 
Byteman provides a simple bit of syntax for specifying that rules should also be injected 
into overriding implementations.

RULE trace Object.finalize
CLASS ^java.lang.Object
METHOD finalize
IF TRUE
DO System.out.println(“Finalizing “ + $0)
ENDRULE

The ^ prefix attached to the class name  tells the agent that the rule should apply to 
implementations of finalize defined either by class Object or by any class which 
extends Object. This prefix can also be used with interface rules, requiring the agent to 
inject the rule code into methods of classes which implement the interface and also into 
overriding methods on subclasses of the implementing classes.

Note that if an overriding method invokes a super method then this style of  injection may 
cause the injected rule code to be triggered more than once. In particular, injecting into 
constructors (which, inevitably, invoke some form of super constructor) will often result in 
multiple triggerings of the rule. This is easily avoided by adding a condition to the rule 
which checks the name of the caller method. So, for example, the rule above would be 
better rewritten as

RULE trace Object.finalize at initial call
CLASS ^java.lang.Object
METHOD finalize
IF NOT callerEquals(“finalize”)
DO System.out.println(“Finalizing “ + $0)
ENDRULE

This rule uses the built-in method callerEquals which can be called with a variety of 
alternative signatures (described in full below). This version calls String.equals() 
comparing the name of the method which called the trigger method to its String 
argument and returns the result. The condition negates this using the NOT operator 
(another way of writing the Java ! Operator).  So, when an implementation of finalize is 



called via the finalizer thread's runFinalizer() method this condition evaluates to true 
and the rule fires. When it gets called via super.finalize() the condition evaluates to 
false and the rule does not fire.

Overriding Interface Rules

The ^prefix can also be used in combination with INTERFACE rules. Normally an interface 
rule is only injected into classes which directly implement the interface methods. This can 
mean that a plain INTERFACE rule does not always get injected into the classes you are 
interested in.

For example, class ArrayList extends class AbstractList which, in turn, implements 
interface List. A rule attached to INTERFACE List will be considered for injection into 
AbstractList but will not be considered for injection into ArrayList. This makes 
sense because AbstractList will  contain an implementation of every method in List (some 
of these methodsmay be abstract). So, any methods in class ArrayList which re-implement 
the interface are considered to be overriding methods. However, the ^ prefix can be used 
to achieve the desired effect. If the rule is attached to INTERFACE ^List then it will be 
considered for injection into both AbstractList and ArrayList.

Note that there is a subtle difference between these cases where a class extends a 
superclass and those where an interface extends a superinterface. The same class 
hierarchy can be used as an example to explain how interface extension is treated.

Let's look at the interface Collection which is extended by interface List. When a rule 
is attached to INTERFACE Collection then it is considered for injection into any class 
which implements Collection and also any class which implements an extension of 
Collection. Since List extends Collection this means that an implementation class 
like AbstractList will be a candidate for the rule. This is because AbstractList  is 
the first class reached down the chain from Collection via List so it is the first point in 
the class hierarchy where an implementation can be found for methods of Collection 
(even if it is only an abstract method). Class ArrayList willl not be a candidate for 
injection because any of it's methods which re-implement a method declared by 
Collection will still only override a method  implemented in AbstractList. If you want 
the rule to be injected into these overriding methods defined in class ArrayList then you 
can do so by attaching the rule to INTERFACE ^Collection.

Location Specifiers

The examples above either specified the precise location of the trigger point within the 
target method to a specific line number using AT LINE or defaulted it to the start of the 
method. Clearly, line numbers can be used to specify almost any point during execution 
and are easy and convenient to use in code which is not subject to change. However, this 
approach is not very useful for test automation where the code under test may well get 
modified. Obviously when code is edited the associated tests need to be revised. But 
modifications to the code base can easily shift the line numbers of unmodified code 
invalidating test scripts unrelated to the edits. Luckily, there are several other ways of 
specifying where a trigger point should be inserted into a target method. For example,



# location specifier example
RULE countdown at commit
CLASS CoordinatorEngine
METHOD commit
AFTER WRITE $current
. . .
ENDRULE

The name current prefixed with a $ sign identifies a local variable,or possibly a method 
parameter. In this case, current happens to be a local variable declared and initialised at 
the start of method CoordinatorEngine.commit whose type is the enum State.

public State commit()
{
  final State current ;
  synchronized(this)
  {
    current = this.state ;
    if (current == State.STATE_PREPARED_SUCCESS) {
      . . .

So, the trigger point will be inserted immediately after the first write operation in the 
bytecode (istore) which updates the stack location used to store current. This is 
effectively the same as saying that the trigger point will occur at the point in the source 
code where local variable current is initialised i.e. the first line inside the synchronized 
block.

By contrast, the following rule would locate the trigger point after the first read from field 
recovered:

# location specifier example 2
RULE add countdown at recreate
CLASS CoordinatorEngine
METHOD <init>
AT READ CoordinatorEngine.recovered
. . .
ENDRULE

Note that in the last example the field type is qualified to ensure that the write is to the field 
belonging to an instance of class CoordinatorEngine. Without the type the rule would 
match any read from a field with name recovered.

The full set of location specifiers is as follows



AT ENTRY
AT EXIT
AT LINE number
AT READ [type .] field [count | ALL ]
AT READ $var-or-idx [count | ALL ]
AFTER READ [ type .] field [count | ALL ]
AFTER READ $var-or-idx [count | ALL ]
AT WRITE [ type .] field [count | ALL ]
AT WRITE $var-or-idx [count | ALL ]
AFTER WRITE [ type .] field [count | ALL ]
AFTER WRITE $var-or-idx [count | ALL ]
AT INVOKE [ type .] method [ ( argtypes ) ] [count | ALL ]
AFTER INVOKE [ type .] method [ ( argtypes ) ][count | ALL ]
AT SYNCHRONIZE [count | ALL ]
AFTER SYNCHRONIZE [count | ALL ]
AT THROW [count | ALL ]

If a location specifier is provided it must immediately follow the METHOD specifier. If no 
location specifier is provided it defaults to AT ENTRY.

An AT ENTRY specifier normally locates the trigger point before the first executable 
instruction in the trigger method. An exception to this occurs in the case of a constructor 
method in which case the trigger point is located before the first instruction following the 
call to the super constructor or redirection call to an alternative constructor. This is 
necessary to ensure that rules do not attempt to bind and operate on the instance before it 
is constructed

An AT EXIT specifier locates a trigger point at each location in the trigger method where a 
normal return of control occurs (i.e. wherever there is an implicit or explicit return but not 
where a throw exits the method).

An AT LINE specifier locates the trigger point before the first executable bytecode 
instruction in the trigger method whose source line number is greater than or equal to the 
line number supplied as argument to the specifier. If there is no executable code at (or 
following) the specified line number the agent will not insert a trigger point (note that it 
does not print an error in such cases because this may merely indicate that the rule does 
not apply to this particular class or method).

An AT READ specifier followed by a field name locates the trigger point before the first 
mention of an object field whose name matches the supplied field name i.e. it corresponds 
to the first occurred of a corresponding getField instruction in the bytecode. If a type is 
specified then the getField instruction will only be matched if the named field is declared 
by a class whose name matches the supplied type. If a count N is supplied then the Nth 
matching getField will be used as the trigger point. Note that the count identifies to the 
Nth textual occurence of the field access, not the Nth field access in a particular execution 
path at runtime. If the keyword ALL is specified in place of a count then the rule wlil be 
triggered at all matching getField calls.

An AT READ specifier followed by a $-prefixed local variable name, method parameter 
name or method parameter index locates the trigger point before the first instruction which 
reads the corresponding local or method parameter variable i.e. it corresponds to an 
iload, dload, aload etc instruction in the bytecode. If a count N is supplied then the Nth 
matching read will be used as the trigger point. Note that the count identifies to the Nth 
textual occurrence of a read of the variable, not the Nth access in a particular execution 
path at runtime. If the keyword ALL is specified in place of a count then the rule will be 



triggered before every read of the variable.

Note that it is only possible to use local or parameter variable names such as $i, $this 
or $arg1 if the trigger method bytecode includes a local variable table, e.g. if it has been 
compiled with the -g flag. By contrast, it is always possible to refer to parameter variable 
read operations using the index notation $0, $1 etc (however, note that location AT READ 
$0 will only match where the trigger method is an instance method).

An AFTER READ specification is identical to an AT READ specification except that it 
locates the trigger point after the getField or variable read operation.

AT WRITE and AFTER WRITE specifiers are the same as the corresponding READ 
specifiers except that they correspond to assignments to the named field or named 
variable in the source code  i.e. they identify putField or istore, dstore, etc 
instructions.

Note that location AT WRITE $0 or, equivalently, AT WRITE $this will never match any 
candidate trigger method because the target object for an instance method invocation is 
never assigned.

Note also that for a given local variable, localvar, location AT WRITE $localvar or, 
equivalently,  AT WRITE $localvar 1 identifies the location immediately after the local 
variable is initialised i.e. it is treated as if it were specified as AFTER WRITE $localvar. 
This is necessary because the variable is not in scope until after it is initialised. This also 
ensures that the local variable which has been written can be safely accessed in the rule 
body.

AT INVOKE and AFTER INVOKE specifiers are like READ and WRITE specifiers except 
that they identify invocations of methods or constructors within the trigger method as the 
trigger point. The method may be identified using a bare method name or the name may 
be qualified by a, possibly package-qualified, type or by a descriptor. A descriptor consists 
of a comma-separated list of type names within brackets. The type names identify the 
types of the method parameters and may be prefixed with package qualifiers and employ 
array bracket pairs as suffixes.

AT SYNCHRONIZE and AFTER SYNCHRONIZE specifiers identify synchronization blocks 
in the target method, i.e. they correspond to MONITORENTER instructions in the bytecode. 
Note that AFTER SYNCHRONIZE identifies the point immediately after entry to the 
synchronized block rather than the point immediately after exit from the block.

An AT THROW specifier identifies a throw operation within the trigger method as the trigger 
point. The throw operation may be qualified by a, possibly package-qualified, typename 
identifying the lexical type of the thrown exception. If a count N is supplied then the 
location specifies the Nth textual occurrence of a throw. If the keyword ALL is specified in 
place of a count then the rule will be triggered at all matching occurrences of a throw.

n.b. as mentioned previously, when several rules specify the same location the order of 
injection of trigger calls usually follows the order of the rules in their respective scripts. The 
exception to this is AFTER locations where the the order of injection is the reverse to the 
order of occurrence.

n.b.b. when a location specifier (other than ENTRY or EXIT) is used with an overriding rule 
the rule code is only injected into the original method or overriding methods if the location 
matches the method in question. So, for example, if location AT READ myField 2 is 
employed then the rule will only be injected into implementations of the method which 
include two loads of field myField. Methods which do not match the location are ignored.



n.b.b.b. for hysterical reasons CALL may be used as a synonym for INVOKE, RETURN may 
be used as a synonym for EXIT and the AT in an AT LINE specifier is optional.

Rule Bindings
The event specification includes a binding specification which computes values for 
variables which can subsequently be referenced in the rule body. These values will be 
computed each time the rule is triggered before testing the rule condition. For example,

# binding example
RULE countdown at commit
CLASS com.arjuna.wst11.messaging.engines.CoordinatorEngine
METHOD commit
AT READ state
BIND engine:CoordinatorEngine = $0;
 recovered:boolean = engine.isRecovered();
 identifier:String = engine.getId()
. . .
ENDRULE

creates a variable called engine. This variable is bound to the recipient of the commit 
method call which triggered the rule, identified by the parameter reference $0 (if commit 
was a static method then reference to $0 would result in a type check exception). 
Arguments to the trigger method can be identified using parameter references with 
successive indices, $1, $2 etc. The declaration of engine specifies its type as being 
CoordinatorEngine though this is not strictly necessary since it can be inferred form 
the type of $0.

Similarly, variables recovered and identifier are bound by evaluating the 
expressions on the right of the = operator.  Note that the binding for engine has been 
established before these variables are bound so it can be referenced in the evaluated 
expression. Once again, type specifications are provided but they could be inferred.

The special syntax BIND NOTHING is available for cases where the rule does not need to 
employ any bindings. Alternatively, the BIND clause may be omitted.

Rule Expressions
Expressions which occur on the right hand side of the = operator in event bindings can be 
simple expressions i.e.

● references to previously bound variables

● references to the trigger method recipient or parameters

● references to the local variables in scope at the trigger point

● references to special variables $!, $^, $#, $*, $@, $CLASS and $METHOD

● static field references

● primitive literals

● field accesses

● static or instance method invocations

● built-in operation invocations

n.b. built-in operations are explained in more detail below.



Expressions can also be complex expressions composed from other expressions using the 
usual Java operators: +, -, *, /, %, &, |, ^, &&, ||, !, =, ==, !=, <. <=, >, >=, new, etc. 
The ternary conditional expression operator, ? :, can also be employed. The type 
checker does its best to identify the types of simple and complex expressions wherever 
possible. So, for example, if it knows the type of bound variable engine then it will be able 
to  employ reflection to infer the type of a field access engine.recovered, a method 
invocation engine.isRecovered(), etc.

Note:

● throw and return operations are only allowed as the last action in a sequence of rule 
actions (see below).

● Expressions should obey the normal rules regarding associativity and precedence.

● The trigger method recipient and parameters may be referred to by index using the 
symbols $0 (invalid for a static method), $1 etc. If the method has been compiled 
with the relevant debug options then symbolic references may also be used. So, for 
example, $this may be used as an alias for $0 and $myArg may be used as an 
alias for $1 if the method first parameter is declared with name myArg,

● If the trigger method has been compiled with the relevant debug options then local 
variables may be referenced symbolically using the same syntax to method 
parameters. So, for example, if variable idx is in scope at the trigger point then 
$idx can be used to obtain its value.

● Special variables provide access to other trigger method data. There are currently 7 
such special variables:

○ $! is valid in at AT EXIT rule and is bound to the return value on the stack at 
the point where the rule is triggered. Its type is the same as the trigger method 
return type. The rule will fail to inject if the trigger method return type is void.

○ $! is also valid in an AFTER INVOKE rule and is bound to the return value on 
the stack at the point where the rule is triggered. Its type is the same as the 
invoked method return type. The rule will fail to inject if the invoked method 
return type is void.

○ $^ is only valid in an AT THROW rule and is bound to the throwable on the stack 
at the point where the rule is triggered. Its type is Throwable.

○ $# has type int and identifies the number of parameters supplied to the trigger 
method.

○ $* is bound to an Object[] array containing the trigger method recipient, 
$this, in slot 0 and the trigger method parameter values, $1, $2 etc in slots 1, 
2 etc (for a static trigger method the value in slot 0 is null).

○ $@ is only valid in an AT INVOKE rule and is bound to an Object[] array 
containing the AT INVOKE target method recipient in slot 0 and the call 
arguments for the target method installed in slots 1 upwards in call order (if the 
target method is static the value in slot 0 is null). Note that this variable is not 
valid in AFTER INVOKE rules. The array contains the call arguments located on 
the stack just before the trigger method calls the AT INVOKE target method. 
These values are no longer available after the call has completed.

○ $CLASS is valid in all rules and is bound to a String whose value is the full 
package qualified name of the trigger class for the rule. The trigger class is the 



class whose method the rule has been injected into. Note that this is normally 
the same as the target class mentioned in the CLASS clause of the rule. 
However, when injecting into interfaces or using overriding injection the trigger 
class may be an implementation or subclass, respectively, of the target class.  
So there may be more than one trigger class for any given target class.

○ $METHOD  is valid in all rules and is bound to a String whose value is the full 
name of the trigger method into which the rule has been injected, qualified with 
signature and return type.  Note that this is normally the same as the target 
method mentioned in the METHOD clause of the rule. However, the target 
method may omit the signature and return type. So there may be more than one 
trigger method for any given target  method.

● Assignments may update the bindings for rule variables introduced in the BINDS 
clause, parameter or local variables, instance fields, static fields or the return value 
special variables $!. Assignments are not currently allowed to update any of the the 
other special variables.

● Assignments to parameter variables or local variables are visible on resumption of 
the trigger method. For example, assume that a rule includes an assignment  such 
as $name = “Ernie”, where name is either a parameter variable or a local 
variable in scope at the trigger point.  If name has value “Bert” when the rule is 
triggered and the assignment actually gets executed then on resumption of the 
trigger method name will have value “Ernie”. Note that assignments cannot be 
made to $this (or, equivalently, $0) as the recipient argument for an instance 
method is always final.

● Assignment to $! updates the return value on top of the stack at the trigger point, 
causing the trigger method to return this updated value. The same effect can be 
achieved by executing a RETURN expression.

● Byteman provides the English language keywords listed below which can be used 
in place of the related standard Java operators (in brackets):
OR (||), AND (&&), NOT (!), LE (<=), LT (<), EQ (==), NE (!=), GE (>=), GT (>), 
TIMES (*), DIVIDE (/), PLUS (+), MINUS (-), MOD (%),
keywords are recognised in either upper or lower (but not mixed) case
keywords may clash with the same names where they they occur as legal Java 
identifiers in the target classes and methods specified in Byteman rules

Rule Conditions
Rule conditions are nothing more than rule expressions with boolean type. For example,

# condition example
RULE countdown at commit
CLASS com.arjuna.wst11.messaging.engines.CoordinatorEngine
METHOD commit
AT READ state
BIND engine:CoordinatorEngine = $this;
 recovered:boolean = engine.isRecovered();
 identifier:String = engine.getId()
IF recovered
. . .
ENDRULE

merely tests the value of bound variable recovered. The same effect could be achieved 



by using the following condition

# condition example 2
RULE countdown at commit
CLASS com.arjuna.wst11.messaging.engines.CoordinatorEngine
METHOD commit
AT READ state
BIND engine:CoordinatorEngine = $this,
 . . .
IF engine.isRecovered()
. . .
ENDRULE

Alternatively, if, say, the instance employed a public field, recovered, to store the 
boolean value returned by method isRecovered then the same effect would be achieved 
by the following condition.

# condition example 3
RULE countdown at commit
CLASS com.arjuna.wst11.messaging.engines.CoordinatorEngine
METHOD commit
AT READ state
BIND engine:CoordinatorEngine = $this,
 . . .
IF engine.recovered
. . .
ENDRULE

Note that the boolean literal true is available for use in expressions so a rule which 
should always fire can use this as the condition expression.

Rule Actions
Rule actions are either a rule expression or a return or throw action or a sequence of rule 
expressions separated by semi-colons, possibly ending with a return or throw action. Rule 
expressions occurring in an action list may have arbitrary type, including void type.

A return action is the return keyword possibly followed by a rule expression which is 
used to compute a return value. A return action causes a return from the triggering method 
so it may omit a return value if and only if the method is void. If a return value is employed 
then the type checker will ensure that it's type is assignable to the return type of the trigger 
method. So, for example, the following use of return is legitimate assuming method 
commit has return type boolean:

# return example
RULE countdown at commit
CLASS com.arjuna.wst11.messaging.engines.CoordinatorEngine
METHOD commit
AT READ state
 . . .
DO debug(“returning early with failure”);
   return false
ENDRULE

A throw action is the throw keyword followed by an throwable constructor expression. An 
throwable constructor expression is the keyword new followed by the class name of the 
throwable which is to be thrown followed by an argument list. The argument list may be 



empty i.e. it may consist of an open and close bracket pair. Alternatively, the brackets may 
include a single rule expression or a sequence of rule expressions separated by commas. 
If no arguments are supplied the throwable type must implement an empty constructor. If 
arguments are supplied then the throwable type must implement a constructor whose 
signature is type-compatible. n.b. for hysterical reasons the new keyword may be omitted 
from the throwable constructor expression which follows the throw keyword.

A throw action causes a throwable of the type named in the exception constructor to be 
created and thrown from the triggering method. In order for this to be valid the expression 
type must either be assignable to java.lang.RuntimeException or 
java.lang.Error or be explicitly declared in the triggering method's throws list. The 
type checker will throw a type exception if either of these conditions is not met. So, for 
example, the  following use of throw is legitimate assuming method commit includes 
WrongStateException in its throws list.

# throw example
RULE countdown at commit
CLASS com.arjuna.wst11.messaging.engines.CoordinatorEngine
METHOD commit
AT READ state
 . . .
DO debug(“throwing wrong state”);
   throw new WrongStateException()
ENDRULE

An empty action list may be specified using the keyword NOTHING. 

Built-In Calls
Built-in calls are written without a recipient as though they were invocations of a method on 
this. The rule engine identifies calls in this format and translates them to runtime 
invocations of helper class instance methods. So, referring back to the last few examples, 
it is apparent that the helper class implements a debugging method with signature

boolean debug(String message)
This method prints the supplied string to System.out and always returns true. It can be 
used in a rule action to display a trace message, for example:

DO debug(“killing JVM”), killJVM()
When the debug built-in is executed the rule engine calls the corresponding method of the 
current helper instance passing it the string “killing JVM”. Method killJVM is 
another built-in  implemented by an instance method of the default helper class Helper.

Note that method debug has a boolean signature so that tracing can also be performed in 
rule conditions. This would normally occur in combination with a test of some bound 
variable or method parameter, for example:

IF debug(“checking for recovered participant”)
AND
participant.isRecovered()
AND
debug(“recovered participant “ + participant.getId())

n.b. AND is an alternative token for the Java && operator.

The rule language implementation automatically exposes all public instance methods of 
class Helper as built-in operations. So when the rule type checker encounters an 



invocation of debug with no recipient supplied it identifies that debug is a method of  class 
Helper and automatically type checks the call against this method. At execution time the 
call is executed by invoking the implementation of debug on the helper instance created 
under the rule trigger call.

This feature allows additional built-ins to be added to the rule engine simply by adding new 
helper implementations. No changes are required to the parser, type checker and compiler 
in order for this to work.

User-Defined Rule Helpers
A rule can specify it's own helper class if it wants to extend, override or replace the set of 
built-in calls available for use in its event, condition or action. For example, in the following 
rule, class  FailureTester is used as the helper class. Its boolean instance method 
doWrongState(CoordinatorEngine) is called from the condition to decide whether or 
not to throw a WrongStateException.

# helper example
RULE help yourself
CLASS com.arjuna.wst11.messaging.engines.CoordinatorEngine
METHOD commit
HELPER com.arjuna.wst11.messaging.engines.FailureTester
AT EXIT
IF doWrongState($0)
DO throw new WrongStateException()
ENDRULE

A helper class does not need to implement any special interface or inherit from any pre-
defined class. It merely needs to provide instance methods to resolve the built-in calls 
which occur in the rule. By sub-classing the default helper it is possible to extend or 
override the default set of methods. For example, the following rule employs a helper 
which adds emphasis to the debug messages printed by the rule.

# helper example 2
RULE help yourself but rely on others
CLASS com.arjuna.wst11.messaging.engines.CoordinatorEngine
METHOD commit
HELPER HelperSub
AT ENTRY
IF NOT flagged($this)
DO debug(“throwing wrong state”);
   flag($this);
   throw new WrongStateException()
ENDRULE

class HelperSub extends Helper
{
    public boolean debug(String message)
    {
        super(“!!! IMPORTANT EVENT !!! “ + message);
    }
}

The rule  is still able to employ the built-in methods flag and flagged defined by the 
default helper class.



The examples above use a HELPER line in the rule body to reset the helper for a specific 
rule. It is also possible to reset the helper for all subsequent rules in a file by adding a 
HELPER line outside of the scope of a rule. So, in the following example the first two rules 
use class HelperSub while the third one uses class YellowSub.

HELPER HelperSub
# helper example 3
RULE helping hand
. . .
RULE I can't help myself
. . .
RULE help, I need somebody
CLASS . . .
METHOD . . .
HELPER YellowSub

The Rule Helper Lifecycle Methods
It is occasionally useful to be able to perform some sort of setup activity when rules are 
loaded or a teardown activity when rules are unloaded. For example, if tracing rules are 
loaded to collect statistics on program execution it would be convenient to add a 
background thread which wakes up at regular intervals in order to print and then zero the 
value of the various counters incremented by the rules. Similarly, it would be helpful to be 
able to detect that all the tracing rules had been unloaded so that the thread can be 
shutdown, avoiding wasted CPU time. The rule engine supports a lifecycle model for 
loading and unloading which makes this sort of  setup and teardown simple to achieve.

There are four lifecyle events in the model: activate, install, uninstall and deactivate. 
Although these lifecycle events are associated with loading and unloading of rules, the 
focus of the event is the helper class associated with the rule being loaded/unloaded. It is 
the helper class which provides a callback method to handle the lifecycle event. The four 
lifecycle events are generated according to the following model.

Assume that we have a helper class H and a set of installed rules R(H) employing H as 
their helper. Obviously R(H) is empty at bootstrap. When a rule r(H) with helper H has 
been loaded (either during agent bootstrap or via the dynamic listener), injected and 
typechecked it is installed into the set R(H). When an installed rule is unloaded via the 
dynamic listener it is uninstalled from the set R(H).

• an activate event occurs when an install cause R(H) to transition from empty to non-
empty

• an install event occurs when r(H) is installed in R(H)

• an uninstall event occurs when r(H) is uninstalled from R(H)

• a deactivate event occurs an uninstall causes R(H) to transition from non-empty to 
empty

Note that an install always generates an activate event before the associated install event. 
An uninstall always generates an uninstall event before any associated deactivate event.

The helper class H is notified of these events if it implements any of the corresponding 
static methods:



public static void activated()
public static void installed(Rule rule)
public static void installed(String ruleName)
public static void uninstalled(Rule rule)
public static void uninstalled(String ruleName)
public static void deactivated()

activated() is called when an activate event occurs. It can perform a one-off set up 
operation on behalf of all rules employing the helper.

deactivated() is called when a deactivate event occurs. It can perform a one-off tear  
down operation on behalf of all rules employing the helper.

installed(Rule) is called when an install event occurs. It can perform a set up 
operation specific to the supplied rule.

deinstalled(Rule) is called when an install event occurs. It can perform a tear down 
operation specific to the supplied rule.

installed(String) and uninstalled(String) can also be implemented as 
alternatives to installed(String) and uninstalled(String) if the helper can 
make do with the rule name rather than using the Byteman Rule instance. Note that if 
both flavours are implemented only the method which takes a Rule will be called.

It is important to understand that loading and unloading of a rule does not always initiate 
lifecycle processing. If a rule does not parse or typecheck correctly it will not be installed  
so it will not generate activate or install events. If later this rule is unloaded it will not 
generate uninstall or deactivate events since it was never installed. It is also possible for a 
valid rule to be loaded and unloaded without initiating lifecycle processing. For example, 
the rule may never get injected because no matching trigger class has been loaded into 
the JVM.



Byteman Rule Language Standard Built-Ins
The default helper class provides the following standard suite of built-in calls for use in rule 
expressions. These are primarily intended for use in condition and action expressions but 
they may also be called in event bindings. They provide features which are designed to 
make it easy to perform complex tests, in particular to coordinate the actions of threads in 
multi-threaded applications. Built-in operations divide into three categories, thread 
coordination operations, rule state management operations and trace and debug 
operations

Thread Coordination Operations

Waiters

The rule engine provides Waiters used to suspend threads during rule execution and then 
have other threads wake them up. The wakeup can simply allow the suspended thread to 
resume execution of the rule which suspended it. Alternatively, it can force the waiting 
thread to exit from the triggering method with an exception. The API defined by the helper 
class is

public void waitFor(Object identifier)
public void waitFor(Object identifier, long millisecsWait)
public boolean waiting(Object identifier)
public boolean signalWake(Object identifier)
public boolean signalWake(Object identifier, boolean 
mustMeet)
public boolean signalThrow(Object identifier)
public boolean signalThrow(Object identifier, boolean 
mustMeet)

As with CountDowns, Waiters are  identified by an arbitrary object. Note that the wait 
operation is not performed by invoking Object.wait on identifier. Doing so might 
interfere with locking and synchronization operations performed by the triggering method 
or its callers. The identifier is merely used by the rule engine to associate wait and signal 
operations. The Helper class  employs it's own private Waiter object to manage the 
synchronization activity.

waitFor is intended for use in a rule action. It suspends the current thread on the Waiter 
associated with the identifier until either a signalWake or a signalThrow is called with 
the same identifier. In the former case the thread will continue processing any subsequent 
actions and then return from the trigger call. In the latter case the thread will throw a 
runtime exception from the triggering method call frame. The version without a wait 
parameter will never time out. The version which employs a wait parameter will time out 
after the specified number of milliseconds.

waiting is intended for use in rule conditions. it will return true if any threads are waiting 
on the relevant Waiter for a signal. It returns false if there are no threads waiting.

signalWake is intended for use in rule conditions or actions. If there are threads waiting 
on the Waiter associated with identifier it wakes them and returns true. If not it 
returns false. Note  this behaviour ensures that a race between multiple threads to signal 
waiting threads from a rule condition can only have one winner.

signalWake takes an optional argument mustMeet which is useful in situations where it 



cannot be guaranteed that the waiting thread will reach its trigger point before the 
signalling thread arrives at its trigger point. If this argument is supplied as true then the 
signalling thread will not deliver its signal until another thread is waiting. If necessary the 
signalling thread will suspend until a waiting thread arrives. Supplying value false is 
equivalent to omitting the optional argument.

signalThrow is identical to signalWake except that it does not just wake any waiting 
threads. It also causes them to throw a runtime exception of type ExecuteException 
from their triggering method call frame when they wake up.

signalThrow also takes an optional argument mustMeet which enables the same 
behaviour as for signalWake..

Rendezvous

Waiters are useful in situations where there is an asymmetrical relationship between 
threads: one or more threads need to wait for an event which will be signalled by the 
thread in which the event happens. A rendezvous provides a way of synchronizing where 
there is no such asymmetry. A rendezvous also provides a way of introducing asymmetry 
since it sorts threads by order of arrival. The value returned from the rendezvous built-in 
can be checked to identify, say,  the first (or last) thread to arrive and that thread can be 
the one whose action is triggered. 

public boolean createRendezvous(Object identifier,
                                int expected)
public boolean createRendezvous(Object identifier,
                                int expected,
                                boolean rejoinable)
public boolean rendezvous(Object identifier)
public boolean isRendezvous(Object identifier, int expected)
public int getRendezvous(Object identifier, int expected)
public int deleteRendezvous(Object identifier, int expected)

createRendezvous creates a rendezvous identified by identifier. count identifies 
the number of threads which must meet at the rendezvous before any one of them is 
allowed to  continue execution. The optional argument rejoinable defaults to false in 
which case any attempt to meet once the first count threads have arrived will fail. If it is 
supplied as true then once count threads have arrived the rendezvous will be reset, 
enabling another round of meetings to occur. createRendezvous returns true if the 
rendezvous is created. If a rendezvous identified by identifier already exists it returns 
false. Note that it is legitimate (although pathological) to supply a count of 1.

rendezvous is called to meet other threads at a rendezvous identified by identifier. If 
the number of threads (including the calling thread) arrived at the rendezvous is less than 
the expected count then the calling thread is suspended. If the number of threads equals 
the expected count then all suspended threads are awoken. A rejoinable rendezvous has 
its arrived count reset to 0 at this point. If the rendezvous is not rejoinable then it is 
deleted and any subsequent call to rendezvous using the original identifier will return -1. 

isRendezvous will return true if a rendezvous identified by identifier with the 
expected count is currently active. If there is no active rendezvous identified by 
identifier or it exists but has a different expected count then getRendezvous will 
return false.

getRendezvous will return the number of threads waiting at the rendezvous identified by 



identifier or 0 if no threads are currently waiting. If there is no rendezvous identified 
by identifier or it exists but has a different expected count then getRendezvous will 
return -1.

deleteRendezvous deletes a rendezvous, breaking the association between 
identifier and the rendezvous and forcing any threads waiting under a call to 
rendezvous to return immediately with result -1. If  a rendezvous with the correct 
expected count is found and successfully deleted it returns true. If there is no such 
rendezvous or if it is deleted either by another concurrent call to deleteRendezvous() 
or because a concurrent call to rendezvous() completes the rendezvous it returns false.

Joiners

Joiners are useful in situations where it is necessary to ensure that a thread does not 
proceed until one or more related threads have exited. This is not always a requirement for 
an application to execute correctly but may be necessary to validate a test scenario. For 
example, a  socket listener thread may create connection manager threads to handle 
incoming connection requests. The listener might use the connection object to notify 
connection manager threads of a forced exit. It does not necessarily have to retain a 
handle on the connection thread and explicitly call Thread.join() be sure the therad 
will exit when notified. However, a test may want to check the thread pool to be sure all 
activity has completed. This means the test needs to be able to accumulate a list of 
managed threads and then subsequently join them either from the manager thread or from 
a test thread.

public boolean createJoin(Object identifier, int expected)
public boolean isJoin(Object identifier, int expected)
public boolean joinEnlist(Object identifier, int expected)
public boolean joinWait(Object identifier, int expected)

createJoin creates a Joiner which can subsequently be referenced by identifier. 
expected identifies the number of threads which are to be joined. If a Joiner is created it 
returns true. If a Joiner is currently identified by identifier it returns false.

isJoin tests whether identifier identifies a Joiner with the given expected count. If 
a Joiner with the given expected count is currently identified by identifier it returns 
true otherwise it returns false

joinEnlist adds the calling thread to the list of threads associated with a Joiner and 
returns true, allowing the thread to proceed towards exit. If identifier does not 
identify a Joiner or identifies a Joiner with the wrong expected count it returns false. It 
also returns false if the calling thread is already contained in the Joiner's thread list or if 
the number of threads added to the list has reached the expected count.

JoinWait suspends the calling thread until the number of threads in the list associated with 
the Joiner reaches the expected count. It then joins each thread in the list and returns 
true. If identifier does not identify a Joiner or identifies a Joiner with the wrong 
expected count it returns false. 

Aborting Execution

The rule engine provides two built-ins for use in rule actions which allow execution of the 
triggering method to be aborted. The API defined by the helper class is



public void killThread()
public void killJVM()
public void killJVM(int exitCode)

killThread causes a runtime exception of type ExecuteException to be thrown from 
the triggering method call frame. This will effectively kill the thread unless a catch-all 
exception handler is installed somewhere up the call stack.

killJVM results in a call to java.lang.Runtime.getRuntime().halt(). This effectively kills the 
JVM without any opportunity for any registered exit handlers to run, simulating a JVM 
crash. If exitCode is not supplied it is defaulted to -1

Rule State Management Operations

CountDowns

The rule engine provides CountDowns which can be used to ensure that firing of some 
given rule will only occur after other rules have been triggered or fired  a certain number of 
times. The API defined by the helper class is

public boolean createCountDown(Object identifier, int count)
public boolean getCountDown(Object identifier)
public boolean countDown(Object identifier)

CountDowns are identified by an arbitrary object, allowing successive calls to the 
countdown API to apply to the same or different cases. This identification can be made 
across different rule and helper instances. For example, one rule might include action 
createCountDown($0, 1) and another rule might include condition countDown($0). 
A CountDown created by the first rule would only be decremented if the second rule was 
triggered from a method call with the same value for this. CountDowns created by 
invocations with distinct values for this would match up accordingly.  However, if the 
CountDown was identified using a common String literal  (i.e. action and condition were 
createCountDown(“counter”, 1) and countDown(“counter”), 
respectively), then the CountDown created by the first rule would be decremented by 
the next firing of the second rule irrespective of whether the trigger method calls were on 
related instances.

createCountDown is used to create a CountDown. count specifies how many times the 
CountDown will be decremented before a decrement operation fails i.e. if count is 1 then 
the CountDown will decrement once and then fail at the next decrement. If count is 
supplied with a value less than 1 it will be replaced with value 1.  createCountDown 
would normally be employed in a rule action. However, it is defined to return true if a new 
CountDown is created and false if there is already a CountDown associated with the 
identifier. This allows it to be used in rule conditions where several rules may be racing to 
create a CountDown.

getCountDown is for use in a rule condition to test whether a CountDown associated with 
a given identifier is present, returning true if so otherwise false.

countDown is for use in a rule condition to decrement a CountDown. It returns false if 
the decrement succeeds or if there is no CountDown associated with identifier. It returns 
true if the CountDown fails i.e. it has count 0. In the latter case the association between 
the identifier and the CountDown is removed, allowing a new CountDown to be started 
using the same identifier. Note that this behaviour ensures that a race between multiple 
threads to decrement a counter from one or more rule conditions can only have one 
winner.



Flags

The rule engine provides a simple mechanism for setting, testing and clearing global flags. 
The API defined by the helper class is

public boolean flag(Object identifier)
public boolean flagged(Object identifier)
public boolean clear(Object identifier)

As before, Flags are  identified by an arbitrary object. All three methods are designed to be 
used either in conditions or actions. 

flag can be called to ensure that the Flag identified by identifier is set. It returns 
true if the Flag was previously clear otherwise false. Note that the API is designed to 
ensure that race conditions between multiple threads trying to set a Flag from rule 
conditions can only have one winner.

flagged tests whether the Flag identified by identifier is set. It returns true if the 
Flag is set otherwise false. 

clear can be called to ensure that the Flag identified by identifier is clear. It returns 
true if the Flag was previously set otherwise false. Note that the API is designed to 
ensure that race conditions between multiple threads trying to clear a Flag from rule 
conditions can only have one winner.

Counters

The rule engine provides Counters which maintain global counts across independent rule 
triggerings. They can be created and initialised, read, incremented and decremented in 
order track and respond to the number of times various triggerings or firings have 
happened. Note that unlike CountDowns there are no special semantics associated with 
decrementing a Counter to zero. They may even have negative values. The API defined 
by the helper class is

public boolean createCounter(Object o)
public boolean createCounter(Object o, int count)
public boolean deleteCounter(Object o)
public int incrementCounter(Object o, int amount)
public int incrementCounter(Object o)
public int decrementCounter(Object o)
public int readCounter(Object o)
public int readCounter(Object o, boolean zero)

As before, Counters are  identified by an arbitrary object. All methods are designed to be 
used in rule conditions or actions. 

createCounter can be called to create a new Counter associated with o. If argument 
count is not supplied then the value of the new Counter defaults to o. createCounter 
returns true if a new Counter was created and false if a Counter  associated with o 
already exists. Note that the API is designed to ensure that race conditions between 
multiple threads trying to create a Counter from rule conditions can only have one winner.

deleteCounter can be called to delete any existing Counter associated with o. It returns 
true if the Counter was deleted and false if no Counter was  associated with o. Note 
that the API is designed to ensure that race conditions between multiple threads trying to 
delete a Counter from rule conditions can only have one winner.

incrementCounter can be called to increment the Counter associated with o. If no such 



Counter exists it will create one with value 0 before incrementing it. incrementCounter 
returns the new value of the Counter. If amount is omitted it defaults to 1.

decrementCounter is equivalent to calling incrementCounter(o, -1) i.e. it adds -1 
to the value of the counter.

readCounter can be called to read the value of the Counter associated with o. If no such 
Counter exists it will create one with value 0. If the optional flag argument zero is passed 
as true the counter is atomically read and zeroed. zero defaults to false.

Timers

The rule engine provides Timers which allow measurement of elapsed time between 
triggerings. Timers can be created, read, reset and deleted via the following API

public boolean createTimer(Object o)
public long getElapsedTimeFromTimer(Object o)
public long resetTimer(Object o)
public boolean deleteTimer(Object o)

As before, Timers are  identified by an arbitrary object. All methods are designed to be 
used in rule conditions or actions.

createTimer can be called to create a new Timer associated with o. createTimer 
returns true if a new Timer was created and false if a Timer associated with o already 
exists.

getElapsedTimeFromTimer can be called to obtain the number of elapsed milliseconds 
since the Timer associated with o was created or since the last call to resetTimer. If no 
timer associated with o exists a new timer is created before returning the elapsed time.

resetTimer can be called to zero the Timer associated with o. It returns the number of 
seconds since the Timer was created or since the last previous call to resetTimer If no 
timer associated with o exists a new timer is created before returning the elapsed time.

deleteTimer can be called to delete the Timer associated with o. deleteTimer returns 
true if a new Timer was deleted and false if no Timer associated with o exists.

Recursive Triggering

When a rule is triggered it executes the Java code in the event, condition and action and 
this may include calls to Helper methods or methods defined by the application under test 
or by the JVM runtime. If any of these methods match Byteman rules then this may result 
in a recursive entry to the rule execution engine. In some cases this may be desirable. 
However, in other cases this recursive entry may cause an infinite triggering chain and it is 
necessary to disable triggering while the rule executes. For example, the following rule will 
fail because of this problem:

RULE infinite triggering chain
CLASS java.io.FileOutputStream
METHOD open(String, int)
AT EXIT
BIND filename = $1
IF TRUE
DO traceln(“openlog”, “Opened “ + $1 + “ for write”)
ENDRULE



The problem is that on the first call to builtin method traceln(Object, String) the 
default helper class attempts to open a trace file which it will then associate with key 
“openlog”. In doing so it calls FileOutputStream.open and retriggers the rule.

One way round this is to specify a condition which will break the chain. The trace file will 
have a name of the form “traceNNN.txt” so the following version of the rule works as 
desired:

RULE infinite triggering chain broken using IF test
CLASS java.io.FileOutputStream
METHOD open(String, int)
AT EXIT
BIND filename = $1
IF !filename.matches(“trace.*”)
DO traceln(“openlog”, “Opened “ + $1 + “ for write”)
ENDRULE

With this version the rule is triggered  recursively under the call to traceln but the 
condition stops it being fired, breaking the recursion.

Of course in other cases it may not be so simple to come up with a condition which avoids 
recursive firing. So, the default helper provides the following method which allows 
triggering to be disabled or re-enabled while the rule is executing

public void setTriggering(boolean enabled)

If enabled is false then triggering is disabled during execution of subsequent expressions 
in the rule body. If it is true then triggering is re-enabled.

This can be used to implement the behaviour shown in the example above without the 
need to identify a suitable conditional

RULE infinite triggering chain broken using IF test
CLASS java.io.FileOutputStream
METHOD open(String, int)
AT EXIT
BIND filename = $1
IF TRUE
DO setTriggering(false);
   traceln(“openlog”, “Opened “ + $1 + “ for write”)
ENDRULE

Note that once execution of the rule has completed triggering is automatically re-enabled 
so, in this case, there is no need to call setTriggering(true) at the end of the DO 
clause.

Trace and Debug Operations

Debugging

The rule engine provides a simple built-in debug method to support conditional display of 
messages during rule execution. The API defined by the helper class is

public boolean debug(String message)
debug prints the supplied message to System.out, prefixed with the name of the rule 
being executed. It always returns true, allowing debug messages to be used in conditions 
by ANDing them with other boolean expressions.



Generation of debug messages can be switched on by setting the following system 
property on the JVM command line:

org.jboss.byteman.debug

Tracing

The rule engine provides a set of built-in methods to support logging of trace messages 
during execution. Messages may be logged to System.out, Sytem.err or to a named file.  
The API defined by the helper class is

public boolean traceOpen(Object identifier, String filename)
public boolean traceOpen(Object identifier)
public boolean traceClose(Object identifier)
public boolean trace(Object identifier, String message)
public boolean traceln(Object identifier, String message)
public boolean trace(String message)
public boolean traceln(String message)

traceOpen opens the file identified by fileName and associates it with identifier, 
returning true. filename can be either a relative or absolute path. Relative file names are 
located relative to the current working directory of the JVM. If there is already a file 
associated with identifier then traceOpen immediately returns false. If a file with the 
given name already exists it is opened in append mode. If filename is omitted then a 
unique name is generated for the file which is guaranteed not to match any existing trace 
file in the current working directory.

traceClose closes the file associated with identifier and removes the association, 
returning true. If no open file is associated with identifier it returns false.

trace prints message to file associated with identifier, returning true. If no open file 
is associated with identifier then a file will be opened and associated with identifier as 
if a call to trace had been made with no file name supplied. If identifier is omitted then the 
output is written to System.out.

traceln prints message to file associated with identifier and appends a newline to 
the file, returning true. If no open file is associated with identifier then a file will be opened 
and associated with identifier as if a call to trace had been made with no file name 
supplied. If identifier is omitted then the output is written to System.out.

A caveat applies to the above descriptions for three special cases. If identifier is null 
or the string “out”, then trace and traceln write to System.out. If identifier is 
the string “err”, then trace and traceln write to System.err. traceOpen and 
traceClose always return false immediately if identifier has any of these values. Calls 
to trace(message) and traceln(message) which omit identifier are implemented by 
calling, respectively, trace(“out”, message) and traceln(“out”, message).

Stack Management Operations

Checking The Call Tree

The rule engine provides a set built-in methods which can be used to check the caller 
stack at the point where the rule was  triggered. Obviously, the rule will only be triggered 
from a method which matches the name in its METHOD clause. However, sometimes it is 
useful to be able to know which method called the trigger rule. For example, the following 



rule will only fire when method MyClass.getData()  is called  from method 
handleIncoming of class MyOtherClass:

RULE trace getData call under handleIncoming
CLASS MyClass
METHOD myGetData
IF callerEquals("MyOtherClass.handleIncoming", true)
DO traceStack("found the caller!\n", 10)
ENDRULE

The API defined by the helper class is

public boolean callerEquals(String name)
public boolean callerEquals(String name,
                            int frameCount)
public boolean callerEquals(String name,
                            int startFrame,
                            int frameCount)
public boolean callerEquals(String name,
                            boolean includeClass)
public boolean callerEquals(String name,
                            boolean includeClass,
                            int frameCount)
public boolean callerEquals(String name,
                            boolean includeClass,
                            int startFrame,
                            int frameCount)
public boolean callerEquals(String name,
                            boolean includeClass,
                            boolean includePackage)
public boolean callerEquals(String name,
                            boolean includeClass,
                            boolean includePackage,
                            int frameCount)
public boolean callerEquals(String name,
                            boolean includeClass,
                            boolean includePackage,
                            int startFrame,
                            int frameCount)



public boolean callerMatches(String regExp)
public boolean callerMatches(String regExp,
                             int frameCount)
public boolean callerMatches(String regExp,
                             int startFrame,
                             int frameCount)
public boolean callerMatches(String regExp,
                             boolean includeClass)
public boolean callerMatches(String regExp,
                             boolean includeClass,
                             int frameCount)
public boolean callerMatches(String regExp,
                             boolean includeClass,
                             int startFrame,
                             int frameCount)
public boolean callerMatches(String regExp,
                             boolean includeClass,
                             boolean includePackage)
public boolean callerMatches(String regExp,
                             boolean includeClass,
                             boolean includePackage,
                             int frameCount)
public boolean callerMatches(String regExp,
                             boolean includeClass,
                             int startFrame,
                             int frameCount)

public boolean callerCheck(String match, boolean isRegExp,
                           boolean includeClass,
                           boolean includePackage,
                           int startFrame,
                           int frameCount) 

The real action happens in method callerCheck(String, boolean, boolean, 
boolean, int, int). All the other methods call each other defaulting the various 
missing arguments until they bottom out in a call to this method.

callerCheck tests frameCount call frames starting from startFrame and returns true 
if any of them matches match.

startFrame defaults to 1 which identifies the stack frame for the caller of the trigger 
method (0 can be used to identify the trigger method itself). framecount also defaults to 
1 which means that when startFrame and frameCount are defaulted the call only 
checks the frame for the caller of the trigger method.

includeClass and includePackage default to false. If includeClass is false then 
match is compared against  the bare name of the method associated with each selected 
stack frame. If includeClass is true and includePackage is false then match is 
compared to the class qualified method name. If both are true then match is compared 
against the full package and class qualified method name.

If isRegExp is true then match is compared as a regular expression compared using 
String.matches() otherwise it compared using String.equals(). The callerEquals 



methods pass this argument to callerCheck as false and the callerMatches methods 
pass this argument as true.

Tracing the Caller Stack

The rule engine provides a set built-in methods which can be used to obtain a string 
representation of a stack trace or to print a stack trace to a trace file. The API defined by 
the helper class is

public void traceStack()
public void traceStack(String prefix)
public void traceStack(String prefix, Object key)
public void traceStack(int maxFrames)
public void traceStack(String prefix, int maxFrames)
public void traceStack(String prefix,
                       Object key,
                       int maxFrames) 

public String formatStack()
public String formatStack(String prefix)
public String formatStack(int maxFrames)
public String formatStack(String prefix, int maxFrames)

The  real action happens in methods traceStack(String, Object, int) and 
formatStack(String, int). All the other methods call each other defaulting the 
various missing arguments until they bottom out in a call to one of these two methods.

formatStack(String prefix, int maxFrames) constructs a printable String 
representation of the stack starting from the trigger frame, including the fully qualified 
method name, file and line number for each frame followed by a new line.

If prefix is non-null it prepended to the generated text. It defaults to null resulting in the 
prefix "Stack trace for thread <current>\n" being used as the prefix where 
<current> is substituted with the value of Thread.currentThread().getName().

If maxFrames is positive and less than the number of frames in the stack then it is used to 
limit the number of frames printed and the text "...\n" is appended to the returned value 
otherwise all frames in the stack are included. maxFrames defaults to 0.

traceStack(String prefix, Object key, int maxFrames) constructs a stack 
trace by calling formatStack(key, maxFrames). It then prints this to a trace file by 
calling trace(key, <value>). As before, prefix defaults to null and maxFrames to 
0. key defaults to "out" so this means that where it is omitted the trace printout will go to 
System.out.

Selective Stack Tracing Using a Regular Expression Filter

It is useful to be able to selectively filter a stack trace, limiting it, say,  to include only 
frames from a given package or set of packages. The rule engine provides an alternative 
set of built-in methods which can be used to obtain or print a string representation of some 
subset of the stack filtered using a regular expression match. The API defined by the 
helper class is



public void traceStackMatching(String regExp)
public void traceStackMatching(String regExp, String prefix)
public void traceStackMatching(String regExp,
                               String prefix,
                               Object key)
public void traceStackMatching(String regExp,
                               boolean includeClass)
public void traceStackMatching(String regExp,
                               boolean includeClass,
                               String prefix)
public void traceStackMatching(String regExp,
                               boolean includeClass,
                               String prefix,
                               Object key)
public void traceStackMatching(String regExp,
                               boolean includeClass,
                               boolean includePackage)
public void traceStackMatching(String regExp,
                               boolean includeClass,
                               boolean includePackage,
                               String prefix)
public void traceStackMatching(String regExp,
                               boolean includeClass,
                               boolean includePackage,
                               String prefix,
                               Object key)

public void formatStackMatching(String regExp)
public void formatStackMatching(String regExp, String prefix)
public void formatStackMatching(String regExp,
                                boolean includeClass)
public void formatStackMatching(String regExp,
                                boolean includeClass,
                                String prefix)
public void formatStackMatching(String regExp,
                                boolean includeClass,
                                boolean includePackage)
public void formatStackMatching(String regExp,
                                boolean includeClass,
                                boolean includePackage,
                                String prefix)

Once again the action happens in the methods with the full set of parameters and the 
others merely call these methods defaulting the omitted arguments.

formatStackMatching(String regExp, boolean includeClass, boolean includePackage, 
String prefix) constructs a printable String representation of the stack prefixed by prefix as 
per formatStack with the difference that frames are only included if they match the regular 
expression regExp. includeClass and includePackage are defaulted and 
interpreted exactly as described in the callerMatches API. If prefix is null (the default) 
then the string "Stack trace for thread <current>  matching regExp\n" is used 
as the prefix where <current> is substituted with the value of 
Thread.currentThread().getName() and regExp is substituted with the value of 



regExp.

traceStackMatching(regExp, includeClass, includePackage, prefix, 
key) calls formatStackMatching to obtain a stack trace and then calls 
trace(String, Object) to print it to the trace stream identified by key. key defaults 
as described in the traceStack API listed above.

Stack Range Tracing

Another option for selective stack tracing is to specify a matching expression to select the 
start and end frame for the trace. The rule engine provides another set of built-in methods 
which can be used to obtain or print a string representation of a segment of the stack in 
this manner. The API defined by the helper class is

public void traceStackBetween(String from, String to)
public void traceStackBetween(String from, String to,
                              String prefix)
public void traceStackBetween(String from, String to,
                              String prefix, Object key)
public void traceStackBetween(String from, String to,
                              boolean includeClass)
public void traceStackBetween(String from, String to,
                              boolean includeClass,
                              String prefix)
public void traceStackBetween(String from, String to,
                              boolean includeClass,
                              String prefix, Object key)
public void traceStackBetween(String from, String to,
                              boolean includeClass,
                              boolean includePackage)
public void traceStackBetween(String from, String to,
                              boolean includeClass,
                              boolean includePackage,
                              String prefix)
public void traceStackBetween(String from, String to,
                              boolean includeClass,
                              boolean includePackage,
                              String prefix, Object key)
public void formatStackBetween(String from, String to)
public void formatStackBetween(String from, String to,
                               String prefix)
public void formatStackBetween(String from, String to,
                               boolean includeClass)
public void formatStackBetween(String from, String to,
                               boolean includeClass,
                               String prefix)
public void formatStackBetween(String from, String to,
                               boolean includeClass,
                               boolean includePackage)
public void formatStackBetween(String from, String to,
                               boolean includeClass,
                               boolean includePackage,
                               String prefix)



public void traceStackBetweenMatches(String from, String to)
public void traceStackBetweenMatches(String from, String to,
                                     String prefix)
public void traceStackBetweenMatches(String from,String to,
                                     String prefix,
                                     Object key)
public void traceStackBetweenMatches(String from, String to,
                                     boolean includeClass)
public void traceStackBetweenMatches(String from, String to,
                                     boolean includeClass,
                                     String prefix)
public void traceStackBetweenMatches(String from, String to,
                                     boolean includeClass,
                                     String prefix,
                                     Object key)
public void traceStackBetweenMatches(String from, String to,
                                     boolean includeClass,
                                     boolean includePackage)
public void traceStackBetweenMatches(String from, String to,
                                     boolean includeClass,
                                     boolean includePackage,
                                     String prefix)
public void traceStackBetweenMatches(String from, String to,
                                     boolean includeClass,
                                     boolean includePackage,
                                     String prefix,
                                     Object key)
public void formatStackBetweenMatches(String from, String to)
public void formatStackBetweenMatches(String from, String to,
                                      String prefix)
public void formatStackBetweenMatches(String from, String to,
                                      boolean includeClass)
public void formatStackBetweenMatches(String from, String to,
                                      boolean includeClass,
                                      String prefix)
public void formatStackBetweenMatches(String from, String to,
                                      boolean includeClass,
                                      boolean includePackage)
public void formatStackBetweenMatches(String from, String to,
                                      boolean includeClass,
                                      boolean includePackage,
                                      String prefix)
public void traceStackRange(String from, String to,
                            boolean isRegExp,
                            boolean includeClass,
                            boolean includePackage,
                            String prefix, Object key) 
public String formatStackRange(String from, String to,
                            boolean isRegExp,
                            boolean includeClass,
                            boolean includePackage,
                            String prefix)

Once again the action happens in the last two methods and all the other methods merely 



provide a way of calling them with default values for various of the parameters. The 
BetweenMatches methods pass true for parameter isRegExp whereas the plain 
Matches methods pass false.

formatStackRange searches the stack starting from the trigger frame for a stack frame 
which matches from. If no match is found then "" is returned. If from is null then the 
trigger frame is taken to be the start frame. It then searches the frames above the start 
frame for a frame which matches to. If no match is found or if to is null then all frames 
above the start frame are selected. Details of each frame in the matching range are 
appended to the supplied prefix to construct the return value. If isRegExp is true then 
the start and end frame are matched using String.matches() otherwise 
String.equals() is used. includeClass and includePackage are defaulted and 
interpreted as per method formatStackMatching. If prefix is null (the default) then the 
string "Stack trace (restricted) for thread <current> \n" is used as the 
prefix where <current> is substituted with the value of 
Thread.currentThread().getName().

traceStackRange calls  formatStackRange to obtain a trace of a stack range and 
then calls trace(Object, String) to print it to a trace file. key defaults to "out" as for the 
other stack trace APIs described above.

Tracing Named Thread Stacks

The default helper class also provides methods which can be used to trace or format the 
stack frames of a specific, named thread:

public void traceThreadStack(String threadName)
public void traceThreadStack(String threadName,
                             String prefix)
public void traceThreadStack(String threadName,
                             String prefix,
                             Object key)
public void traceThreadStack(String threadName,
                             int maxFrames)
public void traceThreadStack(String threadName,
                             String prefix,
                             int maxFrames)
public void traceThreadStack(String threadName,
                             String prefix,
                             Object key,
                             int maxFrames)
public void formatThreadStack(String threadName)
public void formatThreadStack(String threadName,
                             String prefix)
public void traceThreadStack(String threadName,
                             int maxFrames)
public void traceThreadStack(String threadName,
                             String prefix,
                             int maxFrames)

or to trace or format the stacks of all threads in the runtime:



public void traceAllStacks()
public void traceAllStacks(String prefix)
public void traceAllStacks(String prefix, Object key)
public void traceAllStacks(int maxFrames)
public void traceAllStacks(String prefix, int maxFrames)
public void traceAllStacks(String prefix, Object key, int maxFrames)
public void formatAllStacks()
public void formatAllStacks(String prefix)
public void formatAllStacks(int maxFrames)
public void formatAllStacks(String prefix , int maxFrames)

Default Helper Lifecycle Methods
The default helper provides an implementation of the four helper lifecycle methods which 
generate simple debug messages to System.out. So, with debug enabled you will see 
messages like the following as rules are loaded and then unloaded:

Default helper activated
Installed rule using default helper : my test rule
. . .
Installed rule using default helper : my second test rule
. . .
Uninstalled rule using default helper : my test rule
Uninstalled rule using default helper : my second test rule
Default helper deactivated



Using Byteman

Using Byteman from java or ant
If you are using Byteman from the java command line or from ant then you will need to 
download a Byteman release and install it locally. The latest Byteman release is available 
as a zip file from the Byteman project downloads page at

http://www.jboss.org/byteman/downloads 

You need to download either the binary release or the full release and install it in a 
directory accessible on the machine on which you want to run Byteman. The rest of this 
document assumes that environment variable BYTEMAN_HOME identifies the directory into 
which the binary release is unzipped.

The binary release contains all the binary (classfile) jars and command scripts you will 
need to use Byteman, a copy of the programmers guide plus some sample scripts and an 
associated helper jar. The full release also provides source and javadoc jars.

Details of how to use Byteman from the command line are included in part 1 of the 
Byteman Tutorial  A Byteman Tutorial.

Details of how to configure an ant build script to employ the BMUnit package which 
integrates Byteman with JUnit and TestNG are provided in part 2 of the Byteman Tutorial 
Fault Injection Testing With Byteman.

The downloads page also contains a link to downloads for older binary release versions. 
Note that from Byteman 1.1 onwards the agent can only be run in JDK 6 or 7. Previous 
releases can also be run in JDK 5. 

Using Byteman from maven
If you are using Byteman from maven, in particular, if you are using the BMUnit package 
which integrates Byteman with JUnit and TestNG, then you normally only need to declare 
dependencies on the Byteman jars. You can download these jars from JBoss public 
repository.

Details of how to configure your pom to provide the necessary jars are provided in part 2 of 
the Byteman Tutorial Fault Injection Testing With Byteman.

Byteman also provides a maven plugin which can be used to parse and type-check your 
test rule scripts as part of the maven test cycle. Details of how to configure the maven 
plugin are provided in a tutorial available via the Byteman project documentation page

Obtaining the source build tree
If you want to extend understand how Byteman works and, possibly, contribute to the 
Byteman project you will need to download the latest Byteman source tree. The sources 
are available from the master git repository at

https://github.com/bytemanproject/byteman

The source tree is structured as a maven project..

http://www.jboss.org/byteman/
https://github.com/bytemanproject/byteman
http://www.jboss.org/byteman/documentation
http://community.jboss.org/wiki/FaultInjectionTestingWithByteman#top
https://repository.jboss.org/nexus/index.html#welcome
https://repository.jboss.org/nexus/index.html#welcome
http://community.jboss.org/wiki/FaultInjectionTestingWithByteman#top
https://community.jboss.org/wiki/ABytemanTutorial#top


Building Byteman from the sources
Byteman can be built by executing command mvn package in the top level directory of 
the source tree. The build process should produce binary, osurec and javadoc jars in the 
target dircetory of each of the dependent submodules, agent/target, submit/target, 
etc and assemble these into both a binary and a full release zip file in subdirectory 
download/target.

If you are using Byteman from ant or the java command line then you should unzip one of 
the download zip files into your local BYTEMAN_HOME directory as you would for any of 
the official downloads.

If you want to use Byteman from maven then you need to install the byteman jars in your 
local machine's maven repository by executing command mvn install. In this case 
before performing the install process you should modify the project version in the root pom 
and the parent version in each of the dependent submodule poms so that the version you 
install locally does not overwrite a version obtained form the JBoss master repository.

Running Applications with Byteman
The Byteman tutorials explain how to use Byteman to trace and test the behaviour of a 
variety of programs ranging from simple examples to sophisticated test cases. The first 
tutorial covers the basics of how to run Byteman. The second tutorial covers the use of 
Byteman for fault injection testing. It includes details of how to use the annotation based 
testing package BMUnit which integrates Byteman with TestNG and JUnit. The tutorials 
are probably the best thing to look at if you are new to Byteman. The rest of this guide 
provides complete details of how to use Byteman from the Java command line and 
explains all the options which are available when using Byteman. Many of these options 
can also be configured when using Byteman from ant or maven.

Configuring a java agent
Using Byteman from the java command line is refreshingly simple. Installing Byteman at 
JVM startup requires only one extra argument. This argument points the JVM at the agent 
code in the byteman jar and at the script files containing your byteman rules. This is 
specified using the java command flag

-javaagent:agentlib=options
This is a standard option for JDK 1.6 and upwards.

agentlib is a path to the byteman jar. The build process inserts a metadata file in the jar 
which allows the JVM to identify the agent program entry point so everything else is shrink-
wrapped.

options is a comma-separated sequence of options which are passed to the agent.

For example, setting

export JAVA_OPTS="-javaagent:$BYTEMAN_HOME/lib/byteman.jar=
script:$SCRIPT_HOME/HeuristicSaveAndRecover.btm,
script:$SCRIPT_HOME/JBossTSTrace.btm"

will cause the JVM to pick up the byteman jar file from the install root, BYTEMAN_HOME and 
inject all rules found in the two scripts HeuristicSaveAndRecover.btm and 
JBossTSTrace.btm located in directory SCRIPT_HOME. (n.b. the command should 
actually be all on one line without any line breaks – these have been inserted merely as an 
aid to readability)

https://community.jboss.org/wiki/FaultInjectionTestingWithByteman#top
https://community.jboss.org/wiki/ABytemanTutorial#top
https://community.jboss.org/wiki/ABytemanTutorial#top


Normally, the script option is all that is required . However there are several other options 
provided to configure more sophisticated features of the agent such as dynamic rule 
upload. The bmjava command script (see below) can be used to simplify the task of 
concatenating these options into a valid -javaagent argument.

Installing Byteman in a Running JVM using Script bminstall
If your Java application is already running you may still  be able to install the Byteman 
agent into the JVM. The installed bin directory contains a script bminstall1 which can 
be used to contact your application's JVM and install the agent. Once installed you can 
then use script bmsubmit described below to upload or unload rules via the Byteman 
agent listener. The command line syntax for the bminstall script is

bminstall [-p port] [-h host] [-b] \
    [-Dproperty[=value]]* pid

where terms between [ ] are optional * means zero or more repetitions and

pid is the process id of the JVM running your application or, alternatively, the name of the 
application as displayed by running command jps -l.

-h host means use host as the host name when opening the listener socket (the default 
is localhost)

-p port means use port as the port when opening the listener socket (the default is 
9091)

-b means add the byteman jar to the bootstrap class path

-Dproperty=value means call System.setProperty(property, value) before 
starting the agent. More than one such property setting may be provided. If value is 
omitted then it defaults to “”. Note that property must start with prefix 
“org.jboss.byteman.”.

Note that when you identify the JVM  using an application name instead of a process id 
you do not have to provide the full name but you must be sure the name is unambiguous. 
For example, if you want to install the agent into the JBoss Application Server you can use 
the full name org.jboss.Main or the abbreviated names jboss.Main or Main. Clearly, 
Main will often be a bad choice as many applications will use  that name. The install will 
be done using the first matching JVM.

Note also that loading the agent at runtime may not work with certain JVMs. It will 
definitely not work unless your Java release includes a jar named lib/tools.jar below 
your top-level Java install directory and this jar must contain a class called 
com.sun.tools.attach.VirtualMachine. However, even with this jar in place the 
upload may fail.

Available -javaagent Options
Each option comprises a keyword prefix, identifying the type of the option, and a suffix, 
identifying the value of the option. Prefix and suffix are separated by a colon, :. Multiple 
options are separated by commas. Valid options include

script:scriptfile where scriptfile is a path to a file containing Byteman rules. 

1 There is a Windows script called bminstall.bat which you can execute using the command bminstall. The 
Linux script is called bminstall.sh and you must supply this full name to execute it.



This option causes the agent to read the rules in scriptFile and apply them to 
subsequently loaded classes. Multiple script arguments may be provided to ensure that 
more than one rule set is installed. It is possible to start the agent with no initial script 
arguments but this only makes sense if the listener option is supplied with value true.

resourcescript:scriptfile where scriptfile is a path to a resource file on the 
CLASSPATH containing Byteman rules. This option is like the script option except that the 
file containing the Byteman rules is located as a class loader resource (the scriptfile 
argument is passed directly to  ClassLoader.getSystemResourceAsStream())

listener:boolean where boolean is either true or false. This option causes the 
agent to start a listener thread at startup. The listener can be talked to using the 
bmsubmit script, either to provide listings of rule applications performed by the agent or to 
dynamically load, reload  or unload rules. Loading or reloading of a rule causes any 
matching classes which have already been loaded into the JVM to be retransformed, 
inserting a trigger call for the newly loaded rules into their target  methods. Unloading a 
rule causes trigger code to be removed from any matching classes.

port:portnum where portnum is a positive whole number. This option selects the port 
used by the agent listener when opening a server socket to listen on. If not supplied the 
port defaults to 9091. Supplying this option defaults the listener option to true.

address:host where host is a host name. This option selects the address used by the 
agent listener when opening a server socket to listen on. If not supplied the address 
defaults to 9091. Supplying this option defaults the listener option to true.

sys:jarfile where jarfile is a path to to a jar file to be added to the JVM system 
class path. This option makes classes contained in the jar file available for use when type 
checking, compiling and executing rule conditions and actions. It provides a useful way to 
ensure that Helper classes mentioned in rules are able to be resolved. If a rule's  trigger 
class is loaded by some other class loader this loader will normally have the system loader 
as a parent so references to the Helper class should resolve correctly.

boot:jarfile where jarfile is a path to to a jar file to be added to the JVM bootstrap 
class path. This option provides a similar facility to the sys option but it ensures that the 
classes contained in the jar  file are loaded by the bootstrap class loader. This is only 
significant when rules try to inject code into JVM classes which are loaded by the 
bootstrap class loader (which is a parent of the system loader).

prop:name=value where name identifies a System property to be set to value or to the 
empty String if no value is provided. Note that property names must begin with the prefix 
“org.jboss.byteman.”.

Note that when injecting into JVM classes it is necessary to install the byteman jar into the 
boot classpath by passing option boot:${BYTEMAN_HOME}/lib/byteman.jar. 
Without it compilation of the transformed class will fail because it cannot locate classes 
Rule, ExecuteException, ThrowException and ReturnException. Script bmjava 
automatically takes care of this requirement.

Running Byteman Using Script bmjava
The installed bin directory contains a script bmjava which can be used to assemble the 
options passed to the byteman agent and combine them with other java options supplied 
on the java command line. The command line syntax for this script is

bmjava [-p port] [-h host] \



    [ -l script|-b jar|-s jar|-nb|-nl|-nj ]* [--] javaargs

where terms between [ ] are optional, terms separated by | are alternatives, * means 
zero or more repetitions and

-l script means load the rules in file script during program start up

-b jar means add jar file jar to the bootstrap class path

-s jar means add jar file jar to the system class path

-p port means use port as the port when opening the listener socket (the default is 
9091)

-h host means use host as the host name when opening the listener socket (the default 
is localhost)

-nb means don't add the byteman jar to the bootstrap class path (it is added by default)

-nl means don't start the agent listener (it is started by default)

-nj means don't inject into java.lang classes (this is allowed by default)

Submitting Rules Dynamically Using Script bmsubmit
The installed bin directory contains a script called bmsubmit which can be used to 
communicate with the agent listener started up when option listener:true is passed 
as an option to the Byteman agent (recall that this option is always enabled by the 
bminstall and bmjava scripts). This script can be used to upload rules into the running 
program, to unload previously loaded rules and to report which rules have been injected 
and/or whether any errors were detected when attempting injection. bmsubmit can also 
be used to install jars containing helper classes into the bootstrap or system classpath.

The command line syntax for the bmsubmit script is:

submit [-p port] [-h host] [-l|-u] [script1 . . . scriptN]
submit [-p port] [-h host] [-b|-s] jarfile1 . . .
submit [-p port] [-h host] -c
submit [-p port] [-h host] -y [prop1[=[value1]]. . .]
submit [-p port] [-h host] -v

Flags -p and -h can be used to supply the port and host address used to connect to the 
Byteman agent listener. If not supplied they default to 9091 and localhost, respectively.

Flag -l selects the default execution mode for bmsubmit. If no other flag is supplied this 
mode will be used. When run with no arguments submit lists all currently applied 
transformations. This listing includes details of failed transformations, typechecks and 
compiles.

When run with a list of script files bmsubmit uploads the scripts to the agent:

1. If any of the uploaded rules have the same name as an existing rule then the old 
rule is replaced with the new rule and all classes transformed by the rule are 
automatically retransformed. This includes the case where a target class was 
transformed but a subsequent typecheck or compile of the rule failed. This will 
(eventually) cause all threads executing target methods to trigger the new rule 
instead of the old rule. Depending upon when the compiler installs the new method 
code and when executing threads switch to this new code there may be a small 
window following the upload where neither the old nor the new rule is triggered.



2. If any of the uploaded rules apply to already loaded classes which were not 
previously successfully transformed (because no rule applied to them or because 
attempts to transform them failed) then those classes will be retransformed. Once 
again, depending upon when the compiler installs the new method code and when 
executing threads switch to this new code there may be a small window following 
the upload where neither the old nor the new rule is triggered

3. Any other rules will be stored in the agents rule set and applied to newly loaded 
classes which match the rule.

Flag -u selects the uninstall mode for bmsubmit. When run with no arguments bmsubmit 
uninstalls all currently loaded rules. When run with a list of script files bmsubmit uninstalls 
each installed rule whose name matches a rule definition contained in one of the supplied 
script files. bmsubmit does not check that rules in the supplied scripts are well formed, it 
merely looks for lines starting with the text RULE.

Flags -b and -s request installation of jar files into the bootstrap or system classpath, 
respectively. This is useful if rules which are to be submitted dynamically need to be 
provided with access to helper classes which were not in the original class path. There is 
no undo operation for this mode; jar files cannot be uninstalled once they have been 
installed. Also, it is not possible to use this option to install the byteman jar into the 
bootstrap classpath if it was omitted at agent startup. By the time the listener responds to 
this request the system class loader will already have loaded classes from the byteman jar 
so adding the jar to the bootstrap classpath will result in classloader conflicts.

Flag -c can be used to list all helper jars which have been installed by the agent into the 
bootstrap or system classpath.

Flag -y can be used to list or dynamically update the system properties which configure the 
operation of the Byteman agent. If no following arguments are supplied bmsubmit will 
print the value of all system properties in the agent JVM with prefix 
“org.joss.byteman.”. When arguments are supplied bmsubmit will set or clear the 
relevant system properties and notify the agent to update its configuration. If a bare 
property name is supplied then bmsubmit will unset the property. If the property name is 
followed by = and a value then the system property will be set to this value (= with no 
value sets it to an empty string). Note that for performance reasons the agent does not, by 
default, respond to configuration updates (this allows it to test configuration settings during 
operation without incurring any synchronization overhead). Dynamic configuration update 
must be enabled when the agent is started by setting system property 
org.jboss.byteman.allow.config.updates  on the JVM command line (to any 
value).

n.b. Due to a bug in Sun's JDK 6 and 7  and in OpenJDK 6 and 7 errors may occur when 
installing a script in case 2 above (where an uploaded rule is applied to an already loaded 
class which has not yet been transformed).  Scripts which employ references to local 
variables or method parameters by name will fail to compile. These JDKs retain the 
original bytecode for classes which are successfully transformed. However, where classes 
are not transformed the bytecode is discarded. When a retransform is requested the JVM's 
in-memory represenation of the class (a C++ klass instance) is used to reconstitute the 
bytecode. Unfortunately the current reconstitute code does not recreate the local variable 
tables which were in the originally loaded bytecode. There is an OpenJDK bugzilla 
(#100100) and fix for this problem but the fix has not yet been incorporated into a release.



Checking Rules Offline Using Script bmcheck
The installed bin directory contains a script called bmcheck which should be used to parse 
and typecheck your Byteman rules offline before attempting to inject them into your 
application. This script uses environment variable BYTEMAN_HOME to locate the byteman 
jars needed to type check the rules. However, it still needs to be supplied with a classpath 
locating any application classes mentioned in the rules.

The command line syntax for the bmcheck script is:

bmcheck [-cp classpath] [-p package]* script1 [. . . scriptN]
Flag -cp provides a single classpath element used to locate classes mentioned in the 
scripts. If your code is located in several jars then you must supply -cp multiple times.

Flag -p provides one or more package names which are used to resolve target classes 
which have been specified on the CLASS line without a qualifying package name. For 
example, if a rule specifies CLASS myClass and the class actually resides in package 
org.myApp then the rule will be applied when class org.myApp.myClass is loaded during 
application execution. However, the type checker cannot know where to find and load the 
relevant class without a hint. If -p org.myApp is provided on the command line then after 
failing to locate myClass in the empty package the type checker will try to lookup 
myClass in package org.myApp. Each package supplied on the command line is tried in 
order until the class name can be resolved.

Installing And Submitting from Java
The scripts bminstall and bmsubmit used, respectively, to install the agent into a 
running program and to upload and unload scripts are merely wrappers which invoke the 
behaviour of Java classes, org.jboss.byteman.agent.install.Install and 
org.jboss.byteman.agent.submit.Submit, located,respectively, in the byteman-
install and byteman-submit jars in the installed lib directory. The behaviour 
provided by these classes may be invoked from any Java program in order to load the 
agent or rules into the current JVM or into a remote JVM. The contributed packages 
provided with the Byteman release provide interesting examples of how to use this 
powerful capability.

Package BMUnit extends the JUnit and TestNG test  frameworks so that they 
automatically install an agent and loads and unloads rules into/from the JUnit or TestNg  
test JVM as successive unit tests are executed. This makes it trivially easy to inject side 
effects such as tracing, validation code and faults into your application beforerunnign a test 
and then remove these side effects ready for the next test. Details of how to use BMUnit 
are provided in the 2ndof the Byteman tutorials which can be accessed from the Byteman  
Documentation page of the Byteman project web site located at jboss.org.

Package DTest allows a standalone test client to load and unload rules into/from a server 
JVM which allow the client to inject faults into the server code then record and validate 
execution of the server. Consult the Javadoc of these two API classes and the contributed 
package README files and source code for full details.

Environment Settings
The agent is sensitive to various environment settings which configure its behaviour.

If  system property



org.jboss.byteman.compileToBytecode

 is set (with any value) then the rule execution engine will compile rules to bytecode before 
executing them. If this property is unset it will execute rules by interpreting the rule parse 
tree.

Transformations performed by the agent can be observed by setting several environment 
variables which cause the transformed bytecode to be dumped to disk.

If  system property

org.jboss.byteman.dump.generated.classes

 is set the agent transformer code will dump a class file containing the bytecode of any 
class it has modified. The class file is dumped in a directory hierarchy derived from the 
package of the transformed class. So, for example, class  com.arjuna.Foo will be 
dumped to file com/arjuna/Foo.class. 

If system property

org.jboss.byteman.dump.generated.classes.directory

is set to the name of a directory writeable by the JVM then class files will be dumped in a 
package directory hierarchy below this directory. For example, if this property is set with 
value /tmp/dump then class com.arjuna.Foo will be dumped to file 
/tmp/dump/com/arjuna/Foo.class. If this property is unset or does not identify a 
writeable directory then class files will be dumped below the current working directory of 
the JVM.

If system property

org.jboss.byteman.dump.generated.classes.intermediate

is set the agent will dump successive versions of transformed bytecode as successive 
rules applicable to a given class are injected into the bytecode.

If system property

org.jboss.byteman.verbose

is set then the rule execution engine will display a variety of trace messages to the 
System.out as it  parses, typechecks, compiles and executes rules.

Note that the debug built-in is sensitive to this system property as well as to its own 
configuration switch

org.jboss.byteman.debug

If either of these properties is set then debug calls will print to System.out.

If system property

org.jboss.byteman.transform.all
is set then the agent will allow rules to be injected into methods of classes in the 
java.lang hierarchy. Note that this will require the Byteman jar to be installed in the 
bootstrap classpath using the boot: option to the -javaagent JVM command line 
argument.

If system property

org.jboss.byteman.skip.overriding.rules
is set then the agent will not perform injection into overriding method implementations. If 
an overriding rule is installed the agent will print a warning to System.err and treat the 
rule as if it applies only to the class named in the CLASS clause. This setting is not 



actually provided to allow rules to be misused in this way. It is a performance tuning 
option. The agent has to check every class as it is loaded in order to see if there are rules 
which apply to it. It also has to check all loaded classes when rules are dynamically loaded 
via the agent listener. This requires traversing the superclass chain to locate overriding 
rules attached to superclasses. This increases the cost of running the agent (testig 
indicates that the cost goes from negligible (<<  1%) to, at worst,  noticeable (~ 2%) but 
not to significant) So, if you do not intend to use overriding rules then setting this property 
helps to minimise the extent to which the agent perturbs the timing of application runs. 
This is particularly important when testing multi-threaded applications where timing is 
highly significant.

If  system property

org.jboss.byteman.allow.config.updates

is set (with any value) then the Byteman agent will update its configuration when changes 
to the value of system properties are submitted using the bmsubmit client  with option -y. 
Note that this configuration property cannot be reset dynamically using the submit client. 
It must be set when the agent is loaded either on the JVM command line or via the 
bminstall client.

If  system property

org.jboss.byteman.sysprops.strict

is set to false then the Byteman agent will allow the bmsubmit client to modify any 
system properties. If it is unset or set to true then only properties with prefix 
“org.jboss.byteman.” will be modified.  Note that this configuration property cannot 
be reset dynamically using the bmsubmit client.  It must be set when the agent is loaded 
either on the JVM command line or via the bminstall client.
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